# ---------------------------------------------------------------- # The covariance must be positive semi-definite: exactly what that means is not so easy, # but at least all values must be positive, and further the off-diagonal values must not # be too high. # ---------------------------------------------------------------- # ---------------------------------------------------------------- # Yes, any "straight cut" through it will be normal distributed. Think about that any # linear transformation is also normal distributed, and a linear projection is a linear # transformation into a subspace, e.g.\ R^2 -> R, hence it will also be normal distributed. # ---------------------------------------------------------------- # ---------------------------------------------------------------- # First part to be filled in: mu2 <- ?? Sigma2 <- ?? # Can be: mu2 <- A %*% mu + b Sigma2 <- A %*% Sigma %*% t(A) # ---------------------------------------------------------------- # ---------------------------------------------------------------- # Second part to be filled in: # First the mean ?? # Then the variance, it's two not independent variables ?? # Can be: # First the mean t(mu) %*% theta # Then the variance, it's two not independent variables # As matrices t(theta) %*% Sigma %*% theta # Written out for each variable theta[1]^2 * Sigma[1,1] + theta[2]^2 * Sigma[2,2] + 2 * theta[1] * theta[2] * Sigma[1,2] # We also must remember the variance from the independent error, then just add it t(theta) %*% Sigma %*% theta + sigma^2 # ----------------------------------------------------------------