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Week 10: Outline of the lecture

State space models, 1st part:
» The advantages

» The linear state space model

» Determining model structure

» Example

| 4

An example on application of the Kalman filter.
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T An—-1—* Xn %Xn+1”’

| | i

Yn—l Yn Yn+1
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» System model; A full description of the dynamical system (i.e. including the parameters):

X =f(Xp—1) +9(w—1) + ey

» Observations; Noisy measurements of some parts (states) of the system:

Yt = h(Xt) + €2 ¢

» Goal; reconstruct and predict the state of the system
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State space models
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The linear stochastic state space model

System equation: X;=AX, 1+ Bu;_ 1+ e,
Observation equation: Y, = CX;+ eq:

X : State vector
Y : Observation vector
u: Input vector

e1: System noise

vVvYvyVvyy

e5: Observation noise
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The linear stochastic state space model

vVvYvyVvyy

System equation:

Observation equation:

X: State vector

Y : Observation vector
u: Input vector

e1: System noise

e5: Observation noise

t=AX; 1+ Bu; 1 +eyy
t — CXt + 62’15

> dim(X;) = m is called the order of the
system

» {e1:} and {es ¢} mutually independent
white noise

> V[el] = :1, V[eg] = ZQ
» A B, C, X, and X3 are known
matrices
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The linear stochastic state space model

System equation: X;=AX, 1+ Bu;_ 1+ e,
Observation equation: Y, = CX;+ eq:

> dim(X;) = m is called the order of the

> X: State vector system

> Y Observation vector » {e1:} and {es ¢} mutually independent

» wu: Input vector white noise

> e;: System noise > Vel =X, Ve =%,

» e5: Observation noise > A, B, C, ¥, and X5 are known
matrices

» The state vector contains all information available for future evaluation; the process is a

Markov process.
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Examples

» Find examples of systems where state-space models are preferred compared to models
introduced previously in this course.
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Examples

» Find examples of systems where state-space models are preferred compared to models
introduced previously in this course.

» What is the typical kind of system for which state-space models are needed?
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Determining the model structure

1. The system model is often based on physical considerations; start by formulating the model
using differential equations
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Determining the model structure

1. The system model is often based on physical considerations; start by formulating the model
using differential equations

Rewrite m'th order differential equation as m 1st order differential equations.
Find the discrete-time model for a particular time step by formulating the 1-step predictions.

Pray that the resulting model is linear or enrol in Advanced Time Series Analysis (02427).
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Determining the model structure

1. The system model is often based on physical considerations; start by formulating the model
using differential equations

Rewrite m'th order differential equation as m 1st order differential equations.
Find the discrete-time model for a particular time step by formulating the 1-step predictions.
Pray that the resulting model is linear or enrol in Advanced Time Series Analysis (02427).

Add noise to appropriate states.

ook

Formulate observation equation.

7/17



Example — a falling body

An object is dropped at some height with some initial velocity. We want to estimate the position
over time given noisy observations of it.
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Example — a falling body

An object is dropped at some height with some initial velocity. We want to estimate the position
over time given noisy observations of it.
2
. . z
1. Formulate physical equations: Tz —g
2. Rewrite second-order ODE as two first-order ODEs:

dw=| g o]e0+] s

3. Find discrete time model for time-step: (7 = 1)

e

4. It's linear, thanks god!

. 1 1 —-1/2 1 0
. Add noise: mk:[o 1]mk1+[ 7{ }g—i—[o 1] el k-

o1

6. Formulate observation equation: y, = [ 1 0 |k + e.
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How to use the model — a falling body

Given measurements of the position at time points 1,2, ..., k we could:
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How to use the model — a falling body

Given measurements of the position at time points 1,2, ..., k we could:
» Predict the future position and velocity &, (n > 0).
> Reconstruct the current position and velocity from noisy measurements x|

> Smooth to find the best estimate of the position and velocity at a previous time point T,
(n < 0) (estimate the path in the state space).
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Requirement — observability
In order to predict, reconstruct or smooth, the system needs to be observable

Xt = AXt_l + B’U,t_l + elvt
Yt = CXt + 62't
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Requirement — observability
In order to predict, reconstruct or smooth, the system needs to be observable
Xt = AXt_l + B’U,t_l + €1,¢
Yt = CXt + 62't

» Observability is the ability to measure the internal states of a system by examining its outputs.
Provide examples, either mathematically or intuitively where this is not the case.
» In general the linear state space model is observable if and only if:

v

rank [CTi(CA)T! - (cA™ )T | = m.
| |

» For the falling body (from the discrete-time description of the system):

A((l) }) c=(1 0)

emcen] =[5 (1w afy )]G )

> qr( cbind(t(C), t(C %*% A)) )$rank
[1] 2 10/17



The Kalman filter

Initialization:
j§}u>::l3[)(1]::Ito
o= VI[X1i]= Vo

T = CTihCT + 5,
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The Kalman filter

Initialization:

For: t=1,2,3,...

Reconstruction:

Xq0=FE[X1] = po
1‘0: V[Xl] - VO
2714‘% = CXTTOCT 4y,

tlt—1

K =z 0" (z,)

Xyi =Xy + K, (Yt - C/)Etltfl)
T T

= _ vy T
tle = &t[t—1 Ktszth
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The Kalman filter

Initialization:
X1 =E[X1] = po
ﬁEO = [ 1] - VO
zqf\%:C IIOCT+22
For: t=1,2,3,...

-1
K, = tlt— 1€ (zt|t 1)

/)Et\t = /)Eﬂtﬂ +K; (Yt - C/)Eﬂtfl)

o= vy T
e = g — KXy K|

Reconstruction:

/Xﬁrl\t = A/X\ﬂt + Bu,
Y = Azt|tAT +3
zﬁl\t c t+1|tC + 35

Prediction:
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Example: The falling body revised

Description of the system:

A_[(l) H B—{__lf} c=[10]

2.0 0.8

= { 0.8 1_0} ¥, = [ 10000 |

Initialization: Released 10000 m above ground at 0 m/s

= 10000 - 0 0
o] we (i) me

[ 10000 |
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Simulation of a falling body — initialization

z0 <- 10000

A <- matrix(c(1,0,1,1) ,nrow=2)

B <- matrix(c(-.5,-1) ,nrow=2)

C <- matrix(c(1,0) ,nrow=1)

Sigmal <- matrix(c(2,.8,.8,1),nrow=2)
Sigma2 <- matrix(10000)

g <- 9.82; N <- 300

X <- matrix(nrow=2,ncol=N) ## Allocating space
X[,1] <- c(z0,0)

Y <- numeric(N)

Y[1] <- CU*%X[,1]1+sqrt(Sigma2) %*% rnorm(1)
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Simulation of a falling body - simulation

for (I in 2:N){
X[,I] <- A %*% X[,I-1,drop=FALSE] + BY%tYg +
chol(Sigmal) %*% matrix(rnorm(2),ncol=1)
Y[I] <- C %% X[,I] + sqrt(Sigma2) %*% rnorm(1)
¥
Nhit <- min(which(X[1,]1<0))-1
X <- X[,1:Nhit]
Y <- Y[1:Nhit]

> Remember that if Z ~ N(0,1), then Y = QZ ~ N(0, QQT).
» The Cholesky factorization is one way to solve QQ7 = X for Q.
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The falling body — observations

plot(Y,xlab="time",ylab="0bserved altitude [m]", ylim=c(0,max(Y)))
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Falling body — the 10 first time points

10000 10200
|

Position (m)
9800
1
Velocity (m/s)

o
o _|
©
()

A Observed position

O Reconstructed position .
§ | Reconstructed velocity L ?f
S T T T T T

2 4 6 8 10
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Position (m)

Falling body — wrong initial state
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