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Week 10: Outline of the lecture

State space models, 1st part:

▶ The advantages

▶ The linear state space model

▶ Determining model structure

▶ Example

▶ An example on application of the Kalman filter.
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State space models

Xn−1 Xn Xn+1

Yn−1 Yn Yn+1

▶ System model; A full description of the dynamical system (i.e. including the parameters):

Xt = f (Xt−1) + g(ut−1) + e1,t

▶ Observations; Noisy measurements of some parts (states) of the system:

Yt = h(Xt) + e2,t

▶ Goal; reconstruct and predict the state of the system
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State space models
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The linear stochastic state space model

System equation: X t = AX t−1 +Bu t−1 + e1,t

Observation equation: Y t = CX t + e2,t

▶ X : State vector

▶ Y : Observation vector

▶ u : Input vector

▶ e1: System noise

▶ e2: Observation noise

▶ dim(Xt) = m is called the order of the
system

▶ {e1,t} and {e2,t} mutually independent
white noise

▶ V [e1] = ΣΣΣ1, V [e2] = ΣΣΣ2

▶ A, B , C , ΣΣΣ1, and ΣΣΣ2 are known
matrices

▶ The state vector contains all information available for future evaluation; the process is a
Markov process.
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Examples

▶ Find examples of systems where state-space models are preferred compared to models
introduced previously in this course.

▶ What is the typical kind of system for which state-space models are needed?
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Determining the model structure

1. The system model is often based on physical considerations; start by formulating the model
using differential equations

2. Rewrite m’th order differential equation as m 1st order differential equations.

3. Find the discrete-time model for a particular time step by formulating the 1-step predictions.

4. Pray that the resulting model is linear or enrol in Advanced Time Series Analysis (02427).

5. Add noise to appropriate states.

6. Formulate observation equation.
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Example – a falling body
An object is dropped at some height with some initial velocity. We want to estimate the position
over time given noisy observations of it.

1. Formulate physical equations:
d2z

dt2
= −g

2. Rewrite second-order ODE as two first-order ODEs:

x ′(t) =

[
0 1

0 0

]
x (t) +

[
0

−1

]
g

.

3. Find discrete time model for time-step: (T = 1)

x k =

[
1 1

0 1

]
x k−1 +

[
−1/2
−1

]
g.

4. It’s linear, thanks god!

5. Add noise: x k =

[
1 1

0 1

]
x k−1 +

[
−1/2
−1

]
g +

[
1 0

0 1

]
e1,k .

6. Formulate observation equation: yk =
[
1 0

]
x k + e2,k .
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How to use the model – a falling body

Given measurements of the position at time points 1, 2, . . . , k we could:

▶ Predict the future position and velocity x k+n|k (n > 0).

▶ Reconstruct the current position and velocity from noisy measurements x k |k .

▶ Smooth to find the best estimate of the position and velocity at a previous time point x k+n|k
(n < 0) (estimate the path in the state space).
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Requirement – observability
In order to predict, reconstruct or smooth, the system needs to be observable

X t = AX t−1 +Bu t−1 + e1,t

Y t = CX t + e2,t

▶ Observability is the ability to measure the internal states of a system by examining its outputs.
▶ Provide examples, either mathematically or intuitively where this is not the case.
▶ In general the linear state space model is observable if and only if:

rank

[
CT

... (CA)T
... · · ·

...
(
CAm−1)T]

= m.

▶ For the falling body (from the discrete-time description of the system):

A =

(
1 1

0 1

)
, C =

(
1 0

)
[
CT

...(CA)T
]
=

[
1
0

...

([
1 0

] [1 1
0 1

])T
]
=

(
1 1

0 1

)
> qr( cbind(t(C), t(C %*% A)) )$rank
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The Kalman filter

Initialization:

X̂ 1|0 = E [X 1] = µ0

ΣΣΣxx
1|0 = V [X 1] = V 0

ΣΣΣyy
1|0 = CΣΣΣxx

1|0C
T +ΣΣΣ2

For: t = 1, 2, 3, . . .

Reconstruction:

K t = ΣΣΣ
xx
t |t−1C

T
(
ΣΣΣyy

t |t−1

)−1
X̂ t |t = X̂ t |t−1 +K t

(
Y t −CX̂ t |t−1

)
ΣΣΣxx

t |t = ΣΣΣ
xx
t |t−1 −K tΣΣΣ

yy
t |t−1K

T
t

Prediction:

X̂ t+1|t = AX̂ t |t +Bu t

ΣΣΣxx
t+1|t = AΣΣΣxx

t |tA
T +ΣΣΣ1

ΣΣΣyy
t+1|t = CΣΣΣxx

t+1|tC
T +ΣΣΣ2
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Example: The falling body revised

Description of the system:

A =

[
1 1

0 1

]
B =

[
−1/2
−1

]
C =

[
1 0

]
ΣΣΣ1 =

[
2.0 0.8

0.8 1.0

]
ΣΣΣ2 =

[
10000

]
Initialization: Released 10000 m above ground at 0 m/s

X̂ 1|0 =

[
10000

0

]
ΣΣΣxx

1|0 =

[
0 0

0 0

]
ΣΣΣyy

1|0 =
[
10000

]
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Simulation of a falling body – initialization

z0 <- 10000

A <- matrix(c(1,0,1,1),nrow=2)

B <- matrix(c(-.5,-1),nrow=2)

C <- matrix(c(1,0),nrow=1)

Sigma1 <- matrix(c(2,.8,.8,1),nrow=2)

Sigma2 <- matrix(10000)

g <- 9.82; N <- 300

X <- matrix(nrow=2,ncol=N) ## Allocating space

X[,1] <- c(z0,0)

Y <- numeric(N)

Y[1] <- C%*%X[,1]+sqrt(Sigma2) %*% rnorm(1)
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Simulation of a falling body - simulation

for (I in 2:N){

X[,I] <- A %*% X[,I-1,drop=FALSE] + B%*%g +

chol(Sigma1) %*% matrix(rnorm(2),ncol=1)

Y[I] <- C %*% X[,I] + sqrt(Sigma2) %*% rnorm(1)

}

Nhit <- min(which(X[1,]<0))-1

X <- X[,1:Nhit]

Y <- Y[1:Nhit]

▶ Remember that if Z ∼ N (0, I ), then Y = QZ ∼ N (0,QQT ).

▶ The Cholesky factorization is one way to solve QQT = Σ for Q .
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The falling body – observations
plot(Y,xlab="time",ylab="Observed altitude [m]", ylim=c(0,max(Y)))
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Falling body – the 10 first time points
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Falling body – wrong initial state
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