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Week 11: Outline of the lecture

State space models, 2nd part:

Initialization of the Kalman filter
ML-estimates in state space models, Sec. 10.6

The Kalman filter when some observations are missing

>
>
>
» ARMA-models on state space form, Sec. 10.4
» Time-varying systems

>

Examples
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The linear state space model

X, =AX, 1+ Gey:
Yt = CXt+ €9 ¢

> {e;.} and {es} are mutually uncorrelated normally distributed white noise

> V(ey) =Xiand V(eg:) = 2o
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Kalman Filter — Repetition

» What steps does the Kalman Filter consist of?
» How is the model used and how are the observations used?
» Model is used for prediction and combined with observations for reconstruction.

» How are the predictions/observations weighed in the reconstruction step?
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Kalman filter — Initialization

» The Kalman filter has to be initialised - for both analysis and parameter estimation.
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Kalman filter — Initialization

» The Kalman filter has to be initialised - for both analysis and parameter estimation.

» If you have no idea: Put Xl\l =0 and ):1‘1 = al, where I is the identity matrix and « is a
'large’ constant.

» If you know the starting state exactly: Put X1|1 = "Known value' and ZIH = 0, whereby the

first observation has covariance matrix ):?1/|y1 =3,
» If you have a good guess about the starting state: Put X1|1 = "Guess' and lel = Y Guess-

» The important part is that the (un-)certainty of Xl\l is reflected in 27].
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Maximum Likelihood Estimates

» Let Yy~ contain the available observations and let 8 contain the parameters of the model
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Maximum Likelihood Estimates

>

Let Yy~ contain the available observations and let 8 contain the parameters of the model

» The likelihood function is the density of the random vector corresponding to the observations

and given the set of parameters:

L(6;Yn-) = f(Yn-10)

The ML-estimates are (as always) found by selecting 8 so that the density function is as large
as possible at the actual observations
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The random variables Y -
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Maximum Likelihood Estimates

» Let Yy~ contain the available observations and let 8 contain the parameters of the model

» The likelihood function is the density of the random vector corresponding to the observations
and given the set of parameters:

L(6;Yn-) = f(Yn-10)

» The ML-estimates are (as always) found by selecting 8 so that the density function is as large
as possible at the actual observations

Yn+_1 and Yy~_1 are independent, and so:

0) =f (Y N+ |Yne—1,0) f (Vn-—1]0)
Yneo1,0) fF (Y N1 |Yne—2.0)--- (Y 1]0)

» The random variables Y y-

L(6;Yn+) =f (In-
=f(Yn-

> So we need one step predictions including estimates of their variance. Do we know how to do
this?

» The Kalman filter!
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MLE / KF — Prediction

» Assume that at time ¢ we have:

X, = E[X Y] and I = V[X|Y)]
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> Using the model we obtain predictions for time ¢ + 1:

X = AXy,

i = AL AT + G GT
/Y\tJrl\t = CXt+1|t
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MLE / KF — Prediction

» Assume that at time ¢ we have:

X, = E[X Y] and I = V[X|Y)]

> Using the model we obtain predictions for time ¢ + 1:

X\tﬂ\t = Ak\ﬂt

i = AL AT + G GT
/Y\tJrl\t = CXt+1|t

Zﬁl‘t C t+1\tC + 3,

» Due to the gaussian white noise process, f(Y 41|t 0) is the (multivariate) normal density

(see Chapter 2) with mean YHW and variance-covariance ):t+1|t

» Explain to each other how the likelihood function is found constructed and used for estimation.
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MLE / KF — The likelihood function

» Using the prediction errors and variances

Y, =Y, /};i\i—l
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N
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MLE / KF — The likelihood function

» Using the prediction errors and variances

Y, =Y, - /};i\i—l

» The likelihood function can be expressed as

N* 1
3 1~ =
=1

> Yielding the log-likelihood function:

N
1 ~T ~
09 L(0: V) = 5 > <|og det TV + ¥, (Z2,,);" Yi) +e

=1

» The variance of the estimates can be approximated by the 2nd order derivatives of the
log-likelihood.
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MLE / KF — Reconstruction — Missing data
At time ¢ + 1 there are two possibilities for the reconstruction part:

The observation Y ;. is available:

We update the state estimate using the reconstruction step of the Kalman Filter:

1
Ky =%71,,C" (zﬁm)
Xt+1|t+1 Xt+1|t + K (Yt+1 - Yt+1\t)

xx _ T T
t+1)t+1 — zt+1|t Kt+1zt+1\th+1

9/14



MLE / KF — Reconstruction — Missing data

At time ¢ + 1 there are two possibilities for the reconstruction part:

The observation Y ;. is available:

We update the state estimate using the reconstruction step of the Kalman Filter:

1
Ky =%71,,C" (zﬁm)
Xt+1|t+1 Xt+1|t + K (Yt+1 - Yt+1\t)

xx _ T T
t+1)t+1 — zt+1|t Kt+1zt+1\th+1

The observation Y ;. is missing:
We get no new information and we use:

Xirierr = Xy

T o xx
zt+1\t+1 = zt+1|t

9/14



MLE / KF — Reconstruction — Missing data
At time ¢ + 1 there are two possibilities for the reconstruction part:

The observation Y ;. is available:

We update the state estimate using the reconstruction step of the Kalman Filter:

1
Ky =%71,,C" (zﬁm)
Xt+1|t+1 Xt+1|t + K (Yt+1 - Yt+1\t)

xx _ T T
t+1)t+1 — zt+1|t Kt+1zt+1\th+1
The observation Y ;. is missing:
We get no new information and we use:

Xirierr = Xy

T o xx
zt+1\t+1 = zt+1|t

Note: The same technique is used for multi-step predictions.
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The ARMA(p, ¢) model as a state space model

Yt +¢1 thl + "'+¢th,p =& +015t71 + - +6q8t,q

State space form:

X, =AX, 1+ Gey,
Yt = CXt + €2 ¢
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The ARMA(p, ¢) model as a state space model
Yi+o1Yi i+ + Y p=€+0160 1+ + 0464
State space form:

X, =AX, 1+ Gey,
Yt = CXt

Consider the following state space model, where row i is given by how Y; influences Yiy;:

~¢1 10 0 )
—¢s 0 1 -+ 0
01
X = : on o Xt L | &
—¢a1 0 0 0 1 0.
—~¢a 0 0 -
Y, =[1 0 --- 0] X,

where d = max(p, ¢ + 1) and any extra parameter is fixed to zero.
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The ARMA(p, ¢) model as a state space model
Yi+o1Yi i+ + Y p=€+0160 1+ + 0464
State space form:

X, =AX, 1+ Gey,
Yt = CXt

Consider the following state space model, where row i is given by how Y; influences Yiy;:

~¢1 10 0 )
—¢s 0 1 -+ 0
01
X = : on o Xt L | &
—¢a1 0 0 0 1 0.
—~¢a 0 0 -
Y, =[1 0 --- 0] X,

where d = max(p, ¢ + 1) and any extra parameter is fixed to zero.
What is the advantage of writing ARMA-processes on state-space form?
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Estimation in ARMA(p, ¢)-models using the KF

» Using the Kalman filter we can get the mean and variance of the one-step predictions of the
observations:

Yt+1|t = CXt+1\t
vy _ zx T
zt+1|t =Cri; 0 + 1o

» The Kalman filter can handle missing observations

11/14



Estimation in ARMA(p, ¢)-models using the KF

» Using the Kalman filter we can get the mean and variance of the one-step predictions of the
observations:
Yt+1|t = CXt+1\t
vy xz T
zt+1|t =Cri; 0 + 1o
» The Kalman filter can handle missing observations

> An ARMA(p, ¢)-model can be written as a state space model

11/14



Estimation in ARMA(p, ¢)-models using the KF

» Using the Kalman filter we can get the mean and variance of the one-step predictions of the
observations:
Yt+1|t = CXt-H\t
vy xz T
zt+1|t =Cri 0 + 12
» The Kalman filter can handle missing observations

> An ARMA(p, ¢)-model can be written as a state space model

> This gives us a way of calculating ML-estimates in the ARMA(p, ¢)-model even when some
observations are missing.
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Falling body - Revisited

Remember the discretised state-space model of a falling body

1 1 0.5
Xt[o I]Xt—l[l}gJFEt

Yt:[l O}Xt—i—et
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Remember the discretised state-space model of a falling body

1 1 0.5
Xt[o I]Xt—l[l}gJFEt

Yf:[l O}Xt—i—et

Imagine that we believe g to be changing over time, but we don't know how or why. How can we
incorporate this? We can rewrite the model with ¢ as a state!

1 1 —05

Xt: 0 1 —1 Xt71+€t
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Vi=[1 0 0] X;+e

Under what conditions should the process noise for g be non-zero?
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Falling body - Revisited

Remember the discretised state-space model of a falling body

Yt =

:

1 0.5
I]Xt_l[l}nget

[1 O}Xt—i—et

Imagine that we believe g to be changing over time, but we don't know how or why. How can we
incorporate this? We can rewrite the model with ¢ as a state!

Under what conditions should the process noise for g be non-zero?

When does this trick work?

2. ¢

Yy
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Parameter estimation as state-estimation

For the linear state-space model

System equation: X;=AX; 1+ Bu;_ 1+ ey,
Observation equation: Y, = CX; + eay,

when w; unknown, (with observations or not), it can be estimated as a state by

. A B||X,_
System equation: X; = {0 I] [u;f] + e
. . X,
Observation equation: Y; = [C’ 0} u + eay,
t
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Parameter estimation as state-estimation

For the linear state-space model

System equation: X;=AX; 1+ Bu;_ 1+ ey,
Observation equation: Y, = CX; + eay,

when w; unknown, (with observations or not), it can be estimated as a state by

. A B||X,_
System equation: X; = {0 I] [u:j + e
. . X, C 0| X,
Observation equation: Y; = [C 0} [Ut] +egy, or Y= {0 I} [Ut] + eqy

When would you do this? Unknown or uncertain inputs. Update parameter estimate as more
information becomes available. Assumption of varying parameters.
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Summary of state-space models

» Two kinds of noise.
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Summary of state-space models

v

Two kinds of noise. Why is this useful? Instant versus sustained effect.

v

Model identification. What is the general idea? Formulate physical equations or at least
sensible equations.

v

Kalman filter. What are the two steps that it consists of? Reconstruction and prediction.

v

Handling missing values. Why is this so easy? Just don't update during reconstruction step.

v

Adaptive parameter estimates.
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Summary of state-space models

v

Two kinds of noise. Why is this useful? Instant versus sustained effect.

v

Model identification. What is the general idea? Formulate physical equations or at least
sensible equations.

v

Kalman filter. What are the two steps that it consists of? Reconstruction and prediction.

v

Handling missing values. Why is this so easy? Just don't update during reconstruction step.

v

Adaptive parameter estimates. Include parameters as states.
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