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Week 11: Outline of the lecture

State space models, 2nd part:

▶ Initialization of the Kalman filter

▶ ML-estimates in state space models, Sec. 10.6

▶ The Kalman filter when some observations are missing

▶ ARMA-models on state space form, Sec. 10.4

▶ Time-varying systems

▶ Examples
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The linear state space model

X t = AX t−1 +Ge1,t

Y t = CX t + e2,t

▶ {e1,t} and {e2,t} are mutually uncorrelated normally distributed white noise

▶ V (e1,t) = Σ1 and V (e2,t) = Σ2
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Kalman Filter – Repetition

▶ What steps does the Kalman Filter consist of?

▶ How is the model used and how are the observations used?

▶ Model is used for prediction and combined with observations for reconstruction.

▶ How are the predictions/observations weighed in the reconstruction step?
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Kalman filter – Initialization

▶ The Kalman filter has to be initialised - for both analysis and parameter estimation.

▶ If you have no idea: Put X̂ 1|1 = 0 and ΣΣΣxx
1|1 = αI , where I is the identity matrix and α is a

’large’ constant.

▶ If you know the starting state exactly: Put X̂ 1|1 = ’Known value’ and ΣΣΣxx
1|1 = 0, whereby the

first observation has covariance matrix ΣΣΣyy
1|1 = ΣΣΣ2

▶ If you have a good guess about the starting state: Put X̂ 1|1 = ’Guess’ and ΣΣΣxx
1|1 = ΣΣΣGuess.

▶ The important part is that the (un-)certainty of X̂ 1|1 is reflected in ΣΣΣxx
1|1.
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Maximum Likelihood Estimates

▶ Let YN ∗ contain the available observations and let θ contain the parameters of the model

▶ The likelihood function is the density of the random vector corresponding to the observations
and given the set of parameters:

L (θ;YN ∗) = f (YN ∗ |θ)

▶ The ML-estimates are (as always) found by selecting θ so that the density function is as large
as possible at the actual observations

▶ The random variables Y N ∗ |YN ∗−1 and YN ∗−1 are independent, and so:

L (θ;YN ∗) = f (YN ∗ |θ) = f (Y N ∗ |YN ∗−1, θ) f (YN ∗−1|θ)
= f (Y N ∗ |YN ∗−1, θ) f (Y N ∗−1|YN ∗−2, θ) · · · f (Y 1|θ)

▶ So we need one step predictions including estimates of their variance. Do we know how to do
this?

▶ The Kalman filter!
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MLE / KF – Prediction

▶ Assume that at time t we have:

X̂ t |t = E [X t |Yt ] and ΣΣΣxx
t |t = V [X t |Yt ]

▶ Using the model we obtain predictions for time t + 1:

X̂ t+1|t = AX̂ t |t

ΣΣΣxx
t+1|t = AΣΣΣxx

t |tA
T +GΣΣΣ1G

T

Ŷ t+1|t = CX̂ t+1|t

ΣΣΣyy
t+1|t = CΣΣΣxx

t+1|tC
T +ΣΣΣ2

▶ Due to the gaussian white noise process, f (Y t+1|Yt , θ) is the (multivariate) normal density

(see Chapter 2) with mean Ŷ t+1|t and variance-covariance ΣΣΣyy
t+1|t

▶ Explain to each other how the likelihood function is found constructed and used for estimation.
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MLE / KF – The likelihood function

▶ Using the prediction errors and variances

Ỹ i = Y i − Ŷ i|i−1

▶ The likelihood function can be expressed as

L (θ;YN ∗) =
N ∗∏
i=1

[
(2π)m detΣΣΣyy

t |t−1

]− 1
2
exp

[
−
1

2
Ỹ

T

i (ΣΣΣ
yy
t+1|t)

−1Ỹ i

]

▶ Yielding the log-likelihood function:

logL (θ;YN ∗) = −
1

2

N∑
i=1

(
log detΣΣΣyy

t |t−1 + Ỹ
T

i (ΣΣΣ
yy
t+1|t)

−1
i Ỹ i

)
+ c

▶ The variance of the estimates can be approximated by the 2nd order derivatives of the
log-likelihood.
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MLE / KF – Reconstruction – Missing data

At time t + 1 there are two possibilities for the reconstruction part:

The observation Y t+1 is available:
We update the state estimate using the reconstruction step of the Kalman Filter:

K t+1 = ΣΣΣ
xx
t+1|tC

T
(
ΣΣΣyy

t+1|t

)−1
X̂ t+1|t+1 = X̂ t+1|t +K t+1

(
Y t+1 − Ŷ t+1|t

)
ΣΣΣxx

t+1|t+1 = ΣΣΣ
xx
t+1|t −K t+1ΣΣΣ

yy
t+1|tK

T
t+1

The observation Y t+1 is missing:
We get no new information and we use:

X̂ t+1|t+1 = X̂ t+1|t

ΣΣΣxx
t+1|t+1 = ΣΣΣ

xx
t+1|t

Note: The same technique is used for multi-step predictions.
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The ARMA(p, q) model as a state space model

Yt + φ1Yt−1 + · · ·+ φpYt−p = εt + θ1εt−1 + · · ·+ θqεt−q
State space form:

X t = AX t−1 +Gε1,t

Y t = CX t + ε2,t

Consider the following state space model, where row i is given by how Yt influences Yt+i :

X t =


−φ1 1 0 · · · 0

−φ2 0 1 · · · 0
...

...
...

. . .
...

−φd−1 0 0 0 1

−φd 0 0 · · · 0

X t−1 +


1
θ1
...
θd−1

 εt
Y t =

[
1 0 · · · 0

]
X t

where d = max(p, q + 1) and any extra parameter is fixed to zero.
What is the advantage of writing ARMA-processes on state-space form?
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Estimation in ARMA(p, q)-models using the KF

▶ Using the Kalman filter we can get the mean and variance of the one-step predictions of the
observations:

Ŷ t+1|t = CX̂ t+1|t

ΣΣΣyy
t+1|t = CΣΣΣxx

t+1|tC
T +ΣΣΣ2

▶ The Kalman filter can handle missing observations

▶ An ARMA(p, q)-model can be written as a state space model

▶ This gives us a way of calculating ML-estimates in the ARMA(p, q)-model even when some
observations are missing.
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Falling body - Revisited

Remember the discretised state-space model of a falling body

X t =

[
1 1

0 1

]
X t−1 −

[
0.5

1

]
g + ϵt

Yt =
[
1 0

]
X t + et

Imagine that we believe g to be changing over time, but we don’t know how or why. How can we
incorporate this? We can rewrite the model with g as a state!

X t =

1 1 −0.5
0 1 −1
0 0 1

X t−1 + ϵt

Yt =
[
1 0 0

]
X t + et

Under what conditions should the process noise for g be non-zero?
When does this trick work?
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Parameter estimation as state-estimation

For the linear state-space model

System equation: X t = AX t−1 +Bu t−1 + e1,t

Observation equation: Y t = CX t + e2,t ,

when u t unknown, (with observations or not), it can be estimated as a state by

System equation: X t =

[
A B
0 I

] [
X t−1
u t−1

]
+ e1,t

Observation equation: Y t =
[
C 0

] [X t

u t

]
+ e2,t ,

or Y t =

[
C 0
0 I

] [
X t

u t

]
+ e2,t

When would you do this? Unknown or uncertain inputs. Update parameter estimate as more
information becomes available. Assumption of varying parameters.
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Summary of state-space models

▶ Two kinds of noise.

Why is this useful? Instant versus sustained effect.

▶ Model identification. What is the general idea? Formulate physical equations or at least
sensible equations.

▶ Kalman filter. What are the two steps that it consists of? Reconstruction and prediction.

▶ Handling missing values. Why is this so easy? Just don’t update during reconstruction step.

▶ Adaptive parameter estimates. Include parameters as states.
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