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Week 12: Outline of the lecture

Recursive and adaptive estimation:

▶ Recursive LS, Section 11.1

▶ Recursive pseudo-linear regression, Section 11.2

▶ Model-based adaptive estimation, Section 11.4
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Why recursive and adaptive estimation?

▶ As time passes we get more information

▶ New information should be included by“adjustment” rather than recalculating everything

▶ Models are approximations

▶ The best approximation may change over time

▶ Makes it possible to produce software which learns as new data becomes available
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RLS – Types of models considered

REG:

Yt = µ+ β1U1,t + β2U2,t + . . .+ βmUm,t + εt

AR:

φ(B)Yt = µ+ εt ⇔
Yt = µ− φ1Yt−1 − φ2Yt−2 − . . .− φpYt−p + εt

FIR:

Yt = µ+ ω(B)Ut + εt

= µ+ ω0Ut + ω1Ut−1 ++ . . . ωsUt−s + εt

ARX:

φ(B)Yt = µ+ ω(B)Ut + εt ⇔
Yt = µ− φ1Yt−1 − . . .− φpYt−p + ω0Ut + . . .+ ωsUt−s + εt
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Generic form of the models considered

Yt = xT
t θ + εt

= θ1x1,t + θ2x2,t + . . .+ θℓxℓ,t + εt

Example:
Yt = µ · 1︸︷︷︸

x1,t

+ φ2 · (−Yt−2)︸ ︷︷ ︸
x2,t

+ ω1 ·Ut−1︸ ︷︷ ︸
x3,t

+ εt
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LS-estimate at time t

Model:
Yt = xT

t θ + εt

Data (x may contain lagged values of the“real” input/output):

Y1,Y2,Y3,Y4, . . . ,Yt−1,Yt

x 1,x 2,x 4,x 4, . . . ,x t−1,x t

LS-estimate based on t observations:

St(θ) =

t∑
s=1

(Ys − xT
s θ)

2

θ̂t = argmin
θ

St(θ)

= (XTX )−1XTY
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From one time step to the next (in an easy way)

The trick is to realize that:

Rt = XTX = x 1x
T
1 + x 2x

T
2 + . . .+ x tx

T
t =

t∑
s=1

x sx
T
s =

t−1∑
s=1

x sx
T
s + x tx

T
t

h t = XTY = x 1Y1 + x 2Y2 + . . .+ x tYt =

t∑
s=1

x sYs =

t−1∑
s=1

x sYs + x tYs

Where:

x tx
T
t =


x1,tx1,t x1,tx2,t · · · x1,txℓ,t
x2,tx1,t x2,tx2,t · · · x2,txℓ,t

...
...

. . .
...

xℓ,tx1,t xℓ,tx2,t · · · xℓ,txℓ,t

 x tYt =


x1,tYt

x2,tYt

...
xℓ,tYt


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The RLS algorithm

θ̂t = R−1t h t

Rt =

t∑
s=1

x sx
t
s = x tx

T
t +

t−1∑
s=1

x sx
T
s = x tx

T
t +Rt−1

h t =

t∑
s=1

x sYs = x tYt +

t−1∑
s=1

x sYs = x tYt + h t−1

Initialization:

▶ R0 = 0 (matrix of zeros)

▶ h0 = 0 (vector of zeros)

▶ Start estimating θ̂t when Rt is invertible
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The RLS algorithm – 2 equivalent formulations

1. :

Rt = Rt−1 + x tx
T
t

θ̂t = θ̂t−1 +R−1t x t(Yt − xT
t θ̂t−1)

2. Where P t = R−1t :

P t = P t−1 −
P t−1x t

1+ xT
t P t−1x t

xT
t P t−1

K t =
P t−1x t

1+ xT
t P t−1x t

θ̂t = θ̂t−1 +K t(Yt − xT
t θ̂t−1)

Which one would you prefer for applications and why? Second expression avoids matrix-inversion.
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Example: HCt = µ+ θ1Tt + εt

Hour from start
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Forgetting old observations

▶ So far we have a way of updating the estimates as the data set grows

▶ What if the underlying dynamics change over time? We forget old observations:

θ̂t = argmin
θ

St(θ) = (X
TWX )−1XTWY

St(θ) =

t∑
s=1

β(t , s)(Ys − xT
s θ)

2

where W = diag(β(t , 1), β(t , 2), . . . , β(t , t − 1), 1)

▶ β(t , s) expresses how we assign weights to old observations. What does β(t , s) usually look
like?
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Exponential decay of weights

▶ Let’s first consider β(t , s) = λt−s (0 < λ ≤ 1)

λ = 1: What we did with the previous algorithms
0 < λ < 1: We“forget” in an exponential manner

Observation number

W
e

ig
h

t

0 5 10 15 20 25 30

0

1

▶ In the general case it turns out that if the sequence of weights can be written
β(t , s) = λ(t)β(t − 1, s) 1 ≤ s ≤ t − 1

β(t , t) = 1

Then the estimates can be updated recursively. Interpret the limitations these equations
impose.
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The Adaptive Recursive LS algorithm

Rt = x tx
T
t + λ(t)Rt−1

h t = x tYt + λ(t)h t−1

θ̂t = R−1t h t

14 / 21



The Adaptive RLS algorithm – 2 equivalent formulations

1. Eliminating h t :

Rt = λ(t)Rt−1 + x tx
T
t

θ̂t = θ̂t−1 +R−1t x t(Yt − xT
t θ̂t−1)

2. Eliminating h t and avoiding matrix-inversion:

K t =
P t−1x t

λ(t) + xT
t P t−1x t

θ̂t = θ̂t−1 +K t(Yt − xT
t θ̂t−1)

P t =
1

λ(t)

(
P t−1 −

P t−1x tx
T
t P t−1

λ(t) + xT
t P t−1x t

)
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Constant forgetting

▶ If λ(t) = λ we call λ the forgetting factor and define the memory as

T0 =

∞∑
i=0

λi = 1+ λ+ λ2 + λ3 + λ4 + . . . =
1

1− λ

▶ Given a data set an optimal value of λ can be found by“trial and error”

▶ Instead of a linear grid of λ’s, use a linear grid of T0’s

▶ Important detail: The initial estimates might be poor. How should this be taken into account
when choosing λ?
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Variable forgetting

▶ For example: Try to keep Kt constant at S0

, which leads to:

λ(t) ≃ 1−
ε2t

S0
[
1+ xT

t P t−1x t

]
▶ What is the biggest danger in using variable forgetting? and how to solve it?

▶ Apply a lower bound λmin on λ(t)

▶ Finally, try different values of S0 to find one that results in an acceptable rate of updating
parameter estimates.
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Example: HCt = µ+ θ1Tt + εt
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Example: HCt = µ+ θ1Tt + εt , λ = 0.995

Hour from start
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Recursive pseudo-linear regression
▶ Problem: The ARMA structure cannot be estimated using regression directly.

why?
▶ How to circumvent this problem?
▶ Given the parameters, θ, the one-step prediction and thereby residuals can be calculated and

used for regression.
▶ The model becomes

Ŷt |t−1(θ) = XT
t (θ)θ,

where XT
t (θ) contains columns of residuals, assuming that the first few ones are zero.

▶ We minimize

St(θ) = λ(t)St−1(θ) + (Yt −XT
t (θ)θ)

2

with respect to θ.
▶ Then, the RPLR algorithm is:

Rt = x tx
T
t + λ(t)Rt−1

h t = x tYt + λ(t)h t−1

θ̂t = R−1t h t

▶ I.e. as before except that x t must be calculated at each step.
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Model-based adaptive estimation

▶ What is this?

X t+1 = X t + e1,t , V (e1,t) = ΣΣΣ1

Yt = C tX t + e2,t , V (e2,t) = ΣΣΣ2

▶ How do we predict and reconstruct such a system?

▶ As shown in the previous lecture we can include the parameters as the latent state(s)

θt+1 = θt + e1,t , V (e1,t) = ΣΣΣ1

Yt = XT
t θt + e2,t , V (e2,t) = ΣΣΣ2

▶ The parameters might even follow a linear model:

θt+1 = Aθt + e1,t , V (e1,t) = ΣΣΣ1

Yt = XT
t θt + e2,t , V (e2,t) = ΣΣΣ2
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