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Week 12: Outline of the lecture

Recursive and adaptive estimation:
» Recursive LS, Section 11.1
» Recursive pseudo-linear regression, Section 11.2

» Model-based adaptive estimation, Section 11.4
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Why recursive and adaptive estimation?
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Why recursive and adaptive estimation?

As time passes we get more information
New information should be included by “adjustment” rather than recalculating everything
Models are approximations

The best approximation may change over time

vVvYvyVvyy

Makes it possible to produce software which learns as new data becomes available
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RLS — Types of models considered

REG:
Yi = u+B1U1i+BUsi+ ...+ B Un: + &
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Generic form of the models considered

YtZQJtTB—f—St
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Generic form of the models considered

Yt = a:tTB + &
=011t +02T0 + ...+ Opzps + &4

Example:
YVi=p- 1 +¢o (=Yi2) +wi U1 +&

Tt T 73,4
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LS-estimate at time ¢

Model:
Yt:CB;TG-FEt

Data (x may contain lagged values of the “real” input/output):

Yi,Ye, Y5, Yy, ..., Yi1. Y

L1, L2, L4, T4, ..., Ti—1,T¢
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From one time step to the next (in an easy way)

The trick is to realize that:

R, =XxT X—mlml +:1:2:1:2 +. +mt:1:t —Zm a: stm —&—mta:t

t —
h,=XT Y—ﬂ:1Y1+m2Y2+...+tht:ZmSYS:stYs+th
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From one time step to the next (in an

The trick is to realize that:

R =XTX =zx] +zpx] + ...

ht X Y—:1:1Y1+m2Y2+...

Where: T1¢T1¢ T1,t02t

T2ttt X2,¢T2t
Tyl =

T tT1,t T td2,t

t
+mtmtT: g z,x!
s=1

+$th Z

T1,tT¢,¢
T2, Tt

Ty, t T, ¢

easy way)

= E msmsT—&—mta:tT

Zm Y+ ;Y.

21,6 Y4

T2t Yy
T Y =

T, Yy
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The RLS algorithm

§t = Rt_lht

t t—1
t T T T
R, = E TsT, =TT, + E T, =T, + R
s=1 s=1

t -1
hy Zzl‘sYs thYt+Z$sYs =Yy +hi
s=1 s=1
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The RLS algorithm

§t = Rt_lht

t t—1
t T T T
R, = E TsT, =TT, + E T, =T, + R
s=1 s=1

t -1
hy :stys :tht+stYs =Yy +hi
s=1 s=1

Initialization:
> R, = 0 (matrix of zeros)
» ho = 0 (vector of zeros)

» Start estimating ét when R; is invertible
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The RLS algorithm — 2 equivalent formulations

Rt = Rtfl + ﬂL‘tm;T
§t = é\tfl + Rt_lmt(Yt — mtT/H\t,l)
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The RLS algorithm — 2 equivalent formulations

Rt = Rtfl + ﬂltm?
§t = é\tfl + Rt_lmt(Yt — :BtTé\t,l)

2. Where P, = R; %

P,z
1+ IB;TP,gfliBt
_ Pz

1+ mtTPt,lmt

é\t = §t—1 + Kt(Yt - wéré\t_l)

P, =P, - mtTPt*l

t

Which one would you prefer for applications and why? Second expression avoids matrix-inversion.
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Example:

Temperature

Consumption

10 20 30

-10 O
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500

HCt:,U,—f—Qth—i—gt

T

2000 4000 6000 8000
Hour from start
2000 4000 6000 8000

Hour from start
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Example: HC, = u+ 61T, + €

Intercept

Slope

500 1000

0

0 20

-20

-60

0 2000 4000 6000 8000

Hour from start

0 2000 4000 6000 8000

Hour from start
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Forgetting old observations

> So far we have a way of updating the estimates as the data set grows
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Forgetting old observations

> So far we have a way of updating the estimates as the data set grows

» What if the underlying dynamics change over time? We forget old observations:
8, = arg min 5,(8) = (XTWX)'XTWY

Si(8) =Y Bt s)(Y, —2]6)

s=1

where W = diag(8(t,1),8(t,2), ..., B(t, t—1),1)
> (i, s) expresses how we assign weights to old observations. What does 3(¢, s) usually look
like?
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Weight

Exponential decay of weights

> Let's first consider (¢, s) = A7 (0 < A < 1)

A = 1: What we did with the previous algorithms
0 < A < 1: We “forget” in an exponential manner

0

0 5 10 15 20 25

Observation number

30
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» In the general case it turns out that if the sequence of weights can be written
B(t,s) = )B(t —1,5) 1<s<t-1
Bt 1) =1
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Exponential decay of weights

> Let's first consider (¢, s) = A7 (0 < A < 1)

A = 1: What we did with the previous algorithms
0 < A < 1: We “forget” in an exponential manner

Weight

0

0 5 10 15 20 25 30

Observation number

» In the general case it turns out that if the sequence of weights can be written
B(t,s) = )B(t —1,5) 1<s<t-1
Bt 1) =1

Then the estimates can be updated recursively. Interpret the limitations these equations
impose.
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The Adaptive Recursive LS algorithm

Rt = iBtZE;F + >\(t)Rt_1
hi =z Y+ A(t)hi
é\t = R;lht
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The Adaptive RLS algorithm — 2 equivalent formulations

1. Eliminating h;:

Rt = >\(t)Rt71 + .’L‘tmf
§t = gt—l + R 'z (Y, — ﬂftTé\t—l)
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The Adaptive RLS algorithm — 2 equivalent formulations

1. Eliminating h;:

Rt = A(t)Rt,1 + .’Btmf
§t = gt—l + R 'z (Y, — mtTé\t—l)

2. Eliminating h; and avoiding matrix-inversion:
_ Pz,
)\(t) + a:tTPt,lazt
Bt = et_l + Kt(Yt — thBt_l)

1 Pzl Py )
Pi=— (P, -
YE) < TN + 2l Py

t
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Constant forgetting

> If A(t) = X\ we call X the forgetting factor and define the memory as
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Constant forgetting

> If A(t) = X\ we call X the forgetting factor and define the memory as

To=> N =1+A+XN+X+M+. =—

i=0
» Given a data set an optimal value of A\ can be found by “trial and error”

» Instead of a linear grid of \'s, use a linear grid of T's

» Important detail: The initial estimates might be poor. How should this be taken into account

when choosing \?
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Variable forgetting

» For example: Try to keep K; constant at Sy, which leads to:

2
€%

So [1 + :ngptflwt]

ANt)~1-—

» What is the biggest danger in using variable forgetting? and how to solve it?
> Apply a lower bound Apmin on A(2)

» Finally, try different values of Sy to find one that results in an acceptable rate of updating
parameter estimates.
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Example:

Temperature
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Temperature (blue)

Intercept (black)

Example: HC, = u+ 61T, 4+ €;, X = 0.995
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Recursive pseudo-linear regression
» Problem: The ARMA structure cannot be estimated using regression directly.
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Recursive pseudo-linear regression

>
>
>

>

Problem: The ARMA structure cannot be estimated using regression directly. why?

How to circumvent this problem?

Given the parameters, 0, the one-step prediction and thereby residuals can be calculated and
used for regression.

The model becomes

Yi-1(8) = X (0)8,
where XtT(O) contains columns of residuals, assuming that the first few ones are zero.
We minimize
5:(8) = A(£)Si-1(8) + (Vi — X [(8)6)*

with respect to 0.
Then, the RPLR algorithm is:

Rt = :Etil:? + A(t)Rt_l
hi =z Yy + X(t)h;i
6, = R;'h,

l.e. as before except that x; must be calculated at each step.
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Model-based adaptive estimation
» What is this?

Xipn=X:+er, Vien) =%
Yi=Ci X+ ex:, Viea) =X

» How do we predict and reconstruct such a system?

> As shown in the previous lecture we can include the parameters as the latent state(s)

01 =06 +err, Vie) =X,
Yt = X?Bt + €92 ¢, V(egvt) = Zg

» The parameters might even follow a linear model:

01 =A0;+er:, V(ien) =X
Vi=X[0,+ex, V(ea:) =X
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