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Abstract

This paper describes a new approach to online forecasting of power production from PV systems. The method is suited to online
forecasting in many applications and in this paper it is used to predict hourly values of solar power for horizons of up to 36 h. The data
used is 15-min observations of solar power from 21 PV systems located on rooftops in a small village in Denmark. The suggested method
is a two-stage method where first a statistical normalization of the solar power is obtained using a clear sky model. The clear sky model is
found using statistical smoothing techniques. Then forecasts of the normalized solar power are calculated using adaptive linear time ser-
ies models. Both autoregressive (AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes numerical
weather predictions (NWPs) as input. The results indicate that for forecasts up to 2 h ahead the most important input is the available
observations of solar power, while for longer horizons NWPs are the most important input. A root mean square error improvement of
around 35% is achieved by the ARX model compared to a proposed reference model.
� 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Efforts to increase the capacity of solar power produc-
tion in Denmark are concentrating on installing grid con-
nected PV systems on rooftops. The peak power of the
installed PV systems is in the range of 1- to 4-kWp, which
means that the larger systems will approximately cover the
electricity consumption (except heating) of a typical family
household in Denmark. The PV systems are connected to
the main electricity grid and thus the output from other
power production units has to be adjusted in order to bal-
ance the total power production. The cost of these adjust-
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ments increases as the horizon of the adjustments decreases
and thus improved forecasting of solar power will result in
an optimized total power production, and in future power
production systems where energy storage is implemented,
power forecasting is an important factor in optimizing uti-
lization of storage facilities (Koeppel and Korpas, 2006).

The total electricity power production in Denmark is
balanced by the energy market Nord Pool, where electricity
power is traded on two markets: the main market Elspot
and a regulation market Elbas. On Nord Pool the produc-
ers release their bids at 12:00 for production each hour the
following day, thus the relevant solar power forecasts are
updated before 12:00 and consist of hourly values at hori-
zons of 12- to 36-h. The models in this paper focus on such
forecasts, but with the 1- to 11-h horizons also included.

Interest in forecasting solar power has increased and
several recent studies deal with the problem. Many of these
consider forecasts of the global irradiance which is
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Nomenclature

p solar power (W)
pcs clear sky solar power (W)
s normalized solar power (–)
t time index (–)
k forecast horizon index (–)
i, j miscellaneous indexes (–)
pt observation of average solar power (W)
p̂tþkjt k-step prediction of solar power (W)
p̂cs

t estimated clear sky solar power (W)
ĝi;k ith update of NWP of global irradiance (W/m2)
ĝ00

k;t NWP of global irradiance updated at 00:00
(W/m2)

ĝ12
k;t NWP of global irradiance updated at 12:00

(W/m2)

p00
k;t observation of solar power corresponding to ĝ00

k;t
(W)

p12
k;t observation of solar power corresponding to ĝ12

k;t
(W)

st normalized solar power (–)
ŝtþkjt k-step prediction of normalized solar power (–)
ŝnwp

t NWPs transformed into normalized solar power
(–)

xt day of year (–)
yt time of day (–)
et+k k-step prediction error (–)
q quantile level (–)
h bandwidth of smoothing kernel (–)
k forgetting factor (–)
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essentially the same problem as forecasting solar power.
Two approaches are dominant:

� A two-stage approach in which the solar power (or glo-
bal irradiance) is normalized with a clear sky model in
order to form a more stationary time series and such
that the classical linear time series methods for forecast-
ing can be used.
� Another approach in which neural networks (NNs) with

different types of input are used to predict the solar
power (or global irradiance) directly.

In a study, Chowdhury and Rahman (1987) make sub-
hourly forecasts by normalizing with a clear sky model.
The solar power is divided into a clear sky component,
which is modelled with a physical parametrization of
the atmosphere, and a stochastic cloud cover component
which is predicted using ARIMA models. Sfetsos and
Coonick (2000) use NNs to make one-step predictions
of hourly values of global irradiance and compare these
with linear time series models that work by predicting
clearness indexes. Heinemann et al. (2006) use satellite
images for horizons below 6 h, and in (Lorenz et al.,
2007) numerical weather predictions (NWPs) for longer
horizons, as input to NNs to predict global irradiance.
This is transformed into solar power by a simulation
model of the PV system. Hocaoglu et al. (2008) investi-
gate feed-forward NNs for one-step predictions of hourly
values of global irradiance and compare these with sea-
sonal AR models applied on solar power directly. Cao
and Lin (2008) use NNs combined with wavelets to pre-
dict next day hourly values of global irradiance. Different
types of meteorological observations are used as input to
the models; among others the daily mean global irradi-
ance and daily mean cloud cover of the day to be
forecasted.
This paper describes a new two-stage method where first
the clear sky model approach is used to normalize the solar
power and then adaptive linear time series models are
applied for prediction. Such models are linear functions
between values with a constant time difference, where the
model coefficients are estimated by minimizing a weighted
residual sum of squares. The coefficients are updated regu-
larly, and newer values are weighted higher than old values,
hence the models adapt over time to changing conditions.

Normalization of the solar power is obtained by using a
clear sky model which gives an estimate of the solar power
in clear (non-overcast) sky at any given point in time. The
clear sky model is based on statistical smoothing techniques
and quantile regression, and the observed solar power is the
only input. The adaptive linear prediction is obtained using
recursive least squares (RLS) with forgetting. It is found
that the adaptivity is necessary, since the characteristics of
a PV system are subject to changes due to snow cover,
leaves on trees, dirt on the panel, etc., and this has to be
taken into account by an online forecasting system.

The data used in the modelling is described in Section 2.
The clear sky model used for normalizing the solar power is
defined in Section 3 followed by Section 4 where the adap-
tive time series models used for prediction are identified. In
Section 5 an approach to modelling of the uncertainty in
the forecasts is outlined. The evaluation of the models
and a discussion of the results are found in Section 6 and
finally the conclusions of the study are drawn in Section 7.
2. Data

The data used in this study is observations of solar
power from 21 PV systems located in a small village in Jut-
land, Denmark. The data covers the entire year 2006. Fore-
casts of global irradiance are provided by the Danish
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Fig. 2. All 3-h interval values of solar power at time of day 10:30 versus
the corresponding NWPs of global irradiance with 24-h horizon. Hence
the plot shows observations and predictions of values covering identical
time intervals.
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Meteorological Institute using the HIRLAM mesoscale
NWP model.

The PV array in each the 21 PV systems is composed of
‘‘BP 595” PV modules and the inverters are of the type ‘‘BP
GCI 1200”. The installed peak power of the PV arrays is
between 1020 W peak and 4080 W peak, and the average
is 2769 W peak. Let pi,t denote the average value of solar
power (W) over 15 min observed for the ith PV system at
time t. These observations are used to form the time series

fpt; t ¼ 1; . . . ;Ng; ð1Þ
where

pt ¼
1

21

X21

i¼1

pi;t: ð2Þ

This time series is used throughout the modelling. The time
series covers the period from 01 January 2006 to 31 Decem-
ber 2006. The observations are 15-min values, i.e.
N = 35040. Plots of {pt} are shown in Fig. 1 for the entire
period and for two shorter periods.

The NWPs of global irradiance are given in forecasts of
average values for every third hour, and the forecasts are
updated at 00:00 and 12:00 each day. The ith update of
the forecasts is the time series

ĝi;k; k ¼ 1; . . . ; 12f g; ð3Þ
which then covers the forecast horizons up to 36 h ahead,
and is given in W/m2.

Time series are resampled to lower sample frequencies
by mean values and when the resampled values are used
this is noted in the text. In order to synchronize data with
different sample frequencies, the time point for a given
mean value is assigned to the middle of the period that it
covers, e.g. the time point of an hourly value of solar power
from 10:00 to 11:00 is assigned to 10:30.
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Fig. 1. The observations of average solar power used in the study. Top: The
selected periods.
As an example of the NWPs of global irradiance Fig. 2
shows values at time of day 10:30 of {pt} resampled to 3-h
interval values plotted versus the corresponding fĝi;kg val-
ues with a 24-h horizon. Clearly the plot indicates a signif-
icant correlation. Hence it is seen that there is information
in the NWPs, which can be utilized to forecast the solar
power.
3. Clear sky model

A clear sky model is usually a model which estimates the
global irradiance in clear (non-overcast) sky at any given
time. Chowdhury and Rahman (1987) divide the global
irradiance into a clear sky component and a cloud cover
component by

G ¼ Gcs � sc; ð4Þ
ul Sep Nov Jan

May 02

Aug 05

solar power over the entire year 2006. Bottom: The solar power in two
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Fig. 4. Modified boxplots of the distribution of the normalized solar
power as a function of time of day. The boxplots are calculated with all 15-
min values available, i.e. covering all of 2006.
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where G is the global irradiance (W/m2), and Gcs is the
clear sky global irradiance (W/m2). Finally, sc is the trans-
missivity of the clouds which they model as a stochastic
process using ARIMA models. The clear sky global irradi-
ance is found by

Gcs ¼ I0 � sa; ð5Þ
where I0 is the extraterrestrial irradiance (W/m2). sa is the
total sky transmissivity in clear sky which is modelled by
atmospheric dependent parametrization.

In this study the same approach is used, but instead of
applying the factor on global irradiance it is applied on
solar power, i.e.

p ¼ pcs � s; ð6Þ
where p is the solar power (W) and pcs is the clear sky solar
power (W). The factors s and sc are much alike, but since
the clear sky model developed in the present study esti-
mates pcs by statistical smoothing techniques rather than
using physics, the method is mainly viewed as a statistical
normalization technique and s is referred to as normalized
solar power.

The motivation behind the proposed normalization of
the solar power with a clear sky model is that the normal-
ized solar power (the ratio of solar power to clear sky solar
power) is more stationary than the solar power, so that
classical time series models assuming stationarity (Madsen,
2007) can be used for predicting the normalized values. The
non-stationarity is illustrated in Fig. 3 where modified box-
plots indicate the distribution of solar power pt as a func-
tion of time of day. Clearly a change in the distributions
over the day is seen and this non-stationarity must be con-
sidered. Fig. 4 shows the same type of plot for the normal-
ized solar power and it is seen that the distributions over
the day are closer to being identical. Thus the effect of
the changes over the day is much lower for the normalized
solar power than for the solar power.
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Fig. 3. Modified boxplots of the distribution of the solar power as a
function of time of day. The boxplots are calculated with all the 15-min
values of solar power, i.e. covering all of 2006. At each time of the day the
box represents the center half of the distribution, from the first to the third
quantile. The lower and upper limiting values of the distribution are
marked with the ends of the vertical dotted lines, and dots beyond these
indicate outliers.
The clear sky model is defined as

pcs ¼ fmaxðx; yÞ; ð7Þ

where pcs is the clear sky solar power (W), x is the day of
year and y is the time of day. The function fmax(�,�) is as-
sumed to be a smooth function and thus fmax(�,�) can be
estimated as a local maximum (Koenker, 2005). Fig. 5
shows the solar power plotted as a function of x and y,
and the estimated clear sky solar power f̂ maxð�; �Þ is shown
as a surface in Fig. 6. Due to outliers the weighted quantile
regression method outlined in Appendix A is used to find
the local maximum. The f̂ maxð�; �Þ is then used to form
the output of the clear sky model as the time series

p̂cs
t ; t ¼ 1; . . . ;N

� �
; ð8Þ

where p̂cs
t is the estimated clear sky solar power (W) at time

t, and N = 35040. The normalized solar power is now de-
fined as

st ¼
pt

p̂cs
t

; ð9Þ

and this is used to form time series of normalized solar
power

fst; t ¼ 1; . . . ; 35040g: ð10Þ
Fig. 5. The solar power as a function of the day of year, and the time of
day. Note that only positive values of solar power are plotted.
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of day (y) dimension. They are multiplied to form the applied two
dimensional smoothing kernel.

Fig. 6. The estimated clear sky solar power shown as a surface. The solar
power is shown as points.
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For each (xt,yt) corresponding to the solar power obser-
vation pt, weighted quantile regression estimates the q

quantile by a Gaussian two-dimensional smoothing kernel,
defined in Appendix A. The smoothing kernel is used to
form the weights applied in the quantile regression. As seen
in Fig. 7, which shows the smoothing kernel used, the
weights in the day of year dimension w(xt,xi,hx), are
decreasing as the absolute time differences are increasing.
Similarly for the weights in the time of day dimension
w(yt,yi,hy). The applied weights are finally found by multi-
plying the weights from the two dimensions. The choice of
the quantile level q to be estimated and the bandwidth in
each dimension, hx and hy, is based on a visual inspection
Po
w

er
 v

al
ue

s 
(W

)
0

10
00

20
00

N
or

m
al

iz
ed

 v
al

ue
s

Feb 11 May 4 Jun 10 Ju

0
0.

5
1

Fig. 8. The result of the normalization for selected clear sky days over the yea
shows the solar power p and the estimated clear sky solar power p̂cs. The low
of the results. A level of q = 0.85 was used since this gives
st � 1 for days with clear sky all day, as seen in Fig. 8. The
plot for days with varying cloud cover in Fig. 9 shows that
estimates where st > 1 occur. These are ascribed to reflec-
tions from clouds and varying level of water vapour in
the atmosphere. Future work should elaborate on the
inclusion of such effects in the clear sky model.

For small p̂cs
t values the error of st is naturally increasing

and at nighttime the error is infinite. Therefore all values of
p̂cs

t where

p̂cs
t

max p̂cstf gð Þ < 0:2; ð11Þ

are removed from {st}. The function max p̂cs
t

� �� �
gives the

maximum value in p̂cs
t

� �
.

The estimates of clear sky solar power are best in the
summer period. The bad estimates in winter periods are
caused by the sparse number of clear sky observations. It
should also be possible to improve the normalization
toward dusk and dawn, and thus lower the limit where val-
ues in p̂csf g are removed, either by refining the modelling
method or by including more explanatory variables such
as e.g. air mass.

Finally, it is noted that the deterministic changes of
solar power are really caused by the geometric relation
between the earth and the sun, which can be represented
in the current problem by the sun elevation as x and sun
azimuth as y. The clear sky solar power was also modelled
in the space spanned by these two variables, by applying
the same statistical methods as for the space spanned by
day of year and time of day. The result was not satisfac-
tory, i.e. the estimated clear sky solar power was less accu-
rate, probably because neighboring values in this space are
not necessarily close in time and thus changes in the sur-
roundings to the PV system blurred the estimates.

4. Prediction models

Adaptive linear time series models (Madsen, 2007) are
applied to predict future values of the normalized solar
power st. The inputs are: lagged observations of st and
transformed NWPs ŝnwp

t . Three types of models are
identified:
p
p̂cs

l 2 Sep 14 Oct 17 Nov 3

τ

r. The time-axis ticks refer to midday points, i.e. at 12:00. The upper plot
er plot shows the normalized solar power s.
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� A model which has only lagged observations of st as
input. This is an autoregressive (AR) model and it is
referred to as the AR model.
� A model with only ŝnwp

t as input. This is referred to as
the LMnwp model.
� A model with both types of input. This is an autoregres-

sive with exogenous input (ARX) model and it is
referred to as the ARX model.

The best model of each type is identified by using the
autocorrelation function (ACF).

4.1. Transformation of NWPs into predictions of normalized
solar power

In order to use the NWPs of global irradiation ĝi;k as
input to the prediction models, these are transformed into
ŝnwp

t which are meteorological based hourly predictions of
st. This is done by first transforming ĝi;k into solar power
predictions and then transforming these by the clear sky
model. The time series fĝi;kg, defined in (3), holds the ith
NWP forecast of 3-h interval values, and was updated at

timei ¼ t0 þ ði� 1Þ � 12h; ð12Þ

where t0 = 2006-01-0 100:00. Thus the time series with sam-
ple period of one day

ĝ00
k;t; t ¼ 1; . . . ; 364

n o
¼ ĝi;k; i ¼ 1; 3; . . . ; 727f g; ð13Þ

consist of all the NWPs updated at time of day 00:00 at
horizon k, i.e. the superscript ‘‘00” forms part of the name
of the variable. Similarly the time series

ĝ12
k;t; t ¼ 1; . . . ; 364

n o
¼ ĝi;k; i ¼ 2; 4; . . . ; 728f g; ð14Þ

consist of all the NWPs updated at time of day 12:00. The
corresponding time series of solar power covering the iden-
tical time intervals are, respectively

fp00
k;t; t ¼ 1; . . . ; 364g ¼

fpt; t ¼ k; ð1 � 8þ kÞ; . . . ; ð363 � 8þ kÞg ð15Þ

and
p12
k;t; t ¼ 1; . . . ; 364

n o
¼ pt; t ¼ k þ 4; ð1 � 8þ k þ 4Þ; . . . ;f

363 � 8þ k þ 4Þð g; ð16Þ

where {pt} has been resampled to 3-h interval values. The
NWPs are modelled into solar power predictions by the
adaptive linear model

p̂00
k;t ¼ bt þ at ĝ00

k;t þ et: ð17Þ

Note that the hat above the variable indicates that these
values are predictions (estimates) of the solar power. A
similar model is made for the NWP updates at time of
day 12:00 giving p̂12

k;t. The interpretion of the coefficients
bt and at is not further elaborated here, but it is noted
that they are time dependent in order to account for
the effects of changing conditions over time, e.g. the
changing geometric relation between the earth and the
sun, dirt on the solar panel. This adaptivity is obtained
by fitting the model with k-step recursive least squares
(RLS) with forgetting, which is described in Appendix
B. In order to use the RLS algorithm, p00

k;t has to be
lagged depending on k. Each RLS estimation is opti-
mized by choosing the value of the forgetting factor k
from 0.9,0.905, . . ., 1 that minimizes the root mean square
error (RMSE).

The last steps in the transformation of the NWPs is to
normalize p̂00

k;t and p̂12
k;t with the clear sky model, and resam-

ple up to hourly values by linear interpolation. Finally, the
time series

ŝnwp
t ; t ¼ 1; . . . ; 8760

� �
ð18Þ

of the NWPs of global irradiance transformed into predic-
tions of normalized solar power is formed, and this is used
as input to the ARX prediction models as described in the
following. More details can be found in Bacher (2008).
4.2. AR model identification

To investigate the time dependency in {st}, i.e.
dependency between values with a constant time difference,
the ACF is calculated and plotted in Fig. 10. Clearly an
AR(1) component is indicated by the exponential decaying
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Fig. 10. ACF of the time series of normalized solar power {st}.
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pattern of the first few lags and a seasonal diurnal AR
component by the exponential decaying peaks at
lag = 24,48,. . .. By considering only first-order terms this
leads to the 1-step AR model

stþ1 ¼ mþ a1st þ a2st�23 þ etþ1: ð19Þ

And a reasonable 2-step AR model is

stþ2 ¼ mþ a1st þ a2st�22 þ etþ2: ð20Þ

Note that here the 1-step lag cannot be used, since this is
st+1, i.e. a future value, and thus the latest observed value
is included instead. Formulated as a k-step AR model

stþk ¼ mþ a1st þ a2st�sðkÞ þ etþk; ð21Þ
sðkÞ ¼ 24þ k mod 24; ð22Þ

where the function s(k) ensures that the latest observation
of the diurnal component is included. This is needed, since
for k = 25 the diurnal 24-h AR component cannot be used
and instead the 48-h AR component is used. This model is
referred to as the AR model.
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Fig. 11. ACF of the time series of errors {et+k} for selected horizons k of the A

and the grayed points show the lags which cannot be included in the model.
Fig. 11 shows the ACF of {et+k}, which is the time series
of the errors in the model for horizon k, for six selected
horizons after fitting the AR model with RLS, which is
described in Appendix B. The vertical black lines indicate
which lags are included in the model. For k = 1 the corre-
lation of the AR(1) component is removed very well and
the diurnal AR component has also been decreased consid-
erably. There is high correlation left at lag = 24,48, . . ..
This can most likely be ascribed to systematic errors caused
by non-stationarity effects left in {st}, and it indicates that
the clear sky model normalization can be further opti-
mized. For k = 2 and 3 the grayed points show the lags that
cannot be included in the model and the high correlation of
these lags indicate that information is not exploited. The
AR model was extended with higher order AR and diurnal
AR terms without any further improvement in perfor-
mance, see Bacher (2008).

4.3. LMnwp model identification

The model using only NWPs as input

stþk ¼ mþ b1ŝ
nwp
tþkjt þ etþk ð23Þ

is referred to as LMnwp. It is fitted using RLS and the ACF
of {et+k} is shown in Fig. 12 for two horizons. For k = 1
clearly correlation is left from an AR(1) component, but
as seen for both horizons the actual NWP input removes
diurnal correlation very well.

4.4. ARX model identification

The model using both lagged observations of st and
NWPs as input is an ARX model. The LMnwp revealed
an exponential decaying ACF for short horizons and thus
an AR(1) term is clearly needed, whereas adding the diur-
nal AR component has only a small effect. The results show
that in fact the diurnal AR component can be left out, but
48 72

k = 2

1 24 48 72
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48 72
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Lag1 24 48 72

k = 25

R model. The vertical bars indicate the lags included in each of the models,
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Fig. 12. ACF of the time series of errors {et+k} at horizon k = 1 and
k = 24 of the LMnwp model. The grayed points show the lags which cannot
be included in the model.
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Fig. 13. ACF of the time series of errors {et+k} at horizons k = 1 and
k = 24 of the ARX model. The vertical bars indicate the lags included in
each of the models, and the grayed points show the lags which cannot be
included in the model.
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it is retained since this clarifies that no improvement is
achieved by adding it, this is showed later. The model

stþk ¼ mþ a1st þ a2st�sðkÞ þ b1ŝ
nwp
tþkjt þ etþk ð24Þ

is referred to as the ARX model. The model is fitted using
RLS and the ACF of {et+k} is plotted in Fig. 13. It is seen
that the AR(1) component removes the correlation for the
short horizons very well. The ARX was extended with high-
er order AR and diurnal AR terms without any further
improvements in performance.
4.5. Adaptive coefficient estimates

The plots in Fig. 14 show the online coefficient estimates
for the AR model, where a value of k = 0.995 is used since
this is the value that minimizes the RMSEk best for all hori-
zons in the current setting. Clearly the values of the coeffi-
cient estimates change over time and this indicates that the
adaptivity is needed to make an optimal model for online
forecasting.

5. Uncertainty modelling

Extending the solar power forecasts, from predicting a
single value (a point forecast) to predicting a distribution
increases their usefulness. This can be achieved by model-
ling the uncertainties of the solar power forecasts and a
simple approach is outlined here. The classical way of
assuming normal distribution of the errors will in this case
not be appropriate since the distribution of the errors has
finite limits. Instead, quantile regression is used, inspired
by Møller et al. (2008) where it is applied to wind power
forecasts. Plots of {st} versus ŝtf g for a given horizon
reveal that the uncertainties depend on the level of ŝ.
Fig. 15 shows such plots for horizons k = 1 and k = 24.
The lines in the plot are estimates of the 0.05, 0.25, 0.50,
0.75 and 0.95 quantiles of the probability distribution func-
tion of s as a function of ŝ. The weighted quantile regres-
sion with a one-dimensional kernel smoother, described
in Appendix A, is used.

Fig. 15 illustrates that the uncertainties are lower for ŝ
close to 0 and 1, than for the mid-range values around
0.5. Thus forecasts of values toward overcast or clear sky
have less uncertainty than forecasts of a partlyovercast
sky, which agrees with results by Lorenz et al. (2007). Fur-
ther work should extend the uncertainty model to include
NWPs as input.

6. Evaluation

The methods used for evaluating the prediction models
are inspired by Madsen et al. (2005) where a framework
for evaluation of wind power forecasting is suggested.
The RLS fitting of the prediction models does not use
any degrees of freedom and the dataset is therefore not
divided into a training set and a test set. It is, however,
noted that the clear sky model and the optimization of k
does use the entire dataset, and thus the results can be a lit-
tle optimistic. The values in the burn-in period are not used
in calculating the error measures. In Fig. 14 the burn-in
periods for the AR model are shown.

6.1. Error measures

The k-step prediction error is

etþk ¼ ptþk � p̂tþkjt: ð25Þ

The root mean square error (RMSE) for the kth horizon is
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RMSEk ¼
1

N

XN

t¼1

e2
tþk

 !1
2

: ð26Þ

The RMSEk is used as the main evaluation criterion (EC)
for the performance of the models. The normalized root
mean square error (NRMSE) is found by
NRMSEk ¼
RMSEk

pnorm

; ð27Þ

where either

pnorm ¼ �p ¼ 1

N

XN

t¼1

pt; ð28Þ

or pnorm is the average peak power of the 21 PV systems.
The mean value of the RMSEk for a range of horizons
RMSEks;ke ¼
1

ke � ks þ 1

Xke

k¼ks

RMSEk ð29Þ

is used as a summary error measure. When comparing the
performance of two models the improvement

IEC ¼ 100 � ECref � EC
ECref

ð%Þ ð30Þ

is used, where EC is the considered evaluation criterion.
6.2. Reference model

To compare the performance of prediction models, and
especially when making comparisons between different
studies, a common reference model is essential. A reference
model for solar power is here proposed as the best perform-
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ing naive predictor for the given horizon. Three naive pre-
dictors of solar power are found to be relevant. Persistence

ptþk ¼ pt þ etþk; ð31Þ

diurnal persistence

ptþk ¼ pt�sðkÞ þ etþk; ð32Þ
sðkÞ ¼ fspd þ k mod f spd; ð33Þ

where s(k) ensures that the latest diurnal observation is
used and fspd is the sample frequency in number of samples
per day, and diurnal mean

ptþk ¼
1

n

Xn

i¼1

pt�sðk;iÞ þ etþk ð34Þ

sðk; iÞ ¼ i � fspd þ k mod f spd; ð35Þ
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which is the mean of solar power of the last n observations
at the time of day of pt+k. The value of n is chosen such that
all past samples are included.

Fig. 16 shows the RMSEk for each of the three naive
predictors. It is seen that for k 6 2 the persistence predictor
is the best while the best for k > 2 is the diurnal persistence
predictor. This model is referred to as the Reference model.
6.3. Results

Examples of solar power forecasts made with the ARX
model are shown in Fig. 17 for short horizons and in
Fig. 18 for next day horizons. It is found that the fore-
casted solar power generally follows the main level of the
solar power, but the fluctuations caused by sudden changes
in cloud cover are not fully described by the model.

The NRMSEk is plotted for each model in Fig. 19.
Clearly the performance is increasing from the Reference

model to the AR model and further to the ARX model.
The differences from using either the solar power or the
NWPs, or both, as input become apparent from these
results.

At k = 1 the AR model that only uses solar power as
input is better than the LMnwp which only uses NWPs as
input, but at k = 2, . . ., 6 the LMnwp is better, though only
slightly. This indicates that for making forecasts of hori-
zons shorter than 2 h, solar power is the most important
input, whereas for 2- to 6-h horizons, forecasting systems
using either solar power or NWPs can perform almost
equally. The ARX model using both types of input does
have an increased performance at all k = 1, . . ., 6 and thus
8 12 18Aug 20 12 18Sep 19 12 18Oct 19 12 18Nov 19

p
p̂

q=0.95
q=0.05

ons k = 1, . . .,6 made with the ARX model.

7 6 17Aug 26 6 17Oct 7 6 17Nov 19

p
p̂

q=0.95
q=0.05

ons k = 19, . . ., 29 made with the ARX model.



Table 1
Summary error measures of improvements compared to the Reference

model for short horizons k = 1, . . ., 6 and next day horizons k = 19, . . ., 29.

Models IRMSE1;6
ð%Þ IRMSE19;29

ð%Þ
AR over Reference 27 17
LMnwp over Reference 25 36
ARX over Reference 35 36
LMnwp over AR �2 23
ARX over AR 12 23
ARX over LMnwp 13 1
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Fig. 19. The NRMSEk for each of the three models and the Reference model. The left plot show the short horizons and the right the next day horizons.
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PV systems.
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combining the two types of input is found to be the supe-
rior approach.

For k = 19, . . ., 29, which are the next day horizons, very
clearly the LMnwp model and the ARX model perform bet-
ter than the AR model. Since the LMnwp model and the
ARX model perform almost equally, it is seen that no
improvement is achieved from adding the solar power as
input, and thus using only the NWPs as input is found to
be adequate for next day horizons.

A summary of the improvement in performance is calcu-
lated using (29) and (30). The improvements compared to
the Reference model are calculated for the four models
by IRMSE1;6

for short horizons and IRMSE19;29
for next day hori-

zons. The results are shown in Table 1. These results natu-
rally show the same as stated above, though the difference
at k = 1 from AR to LMnwp cannot be seen. These results
show that a RMSE improvement of around 35% over the
Reference model can be achieved by using the ARX model.
7. Conclusions

Inspired by previous studies, the present method for
solar power forecasting has been developed from scratch.
A new approach to clear sky modelling with statistical
smoothing techniques has been proposed, and an adaptive
prediction model based on RLS makes a solid framework
allowing for further refinements and model extensions,
e.g. by including NWPs of temperature as input. The adap-
tivity of the method makes it suited to online forecasting
and ensures comprehension of changing conditions of the
PV system and its surroundings. Furthermore, the RLS
algorithm is not computer intensive, which makes updating
of forecasts fast. The clear sky model used to normalize the
solar power delivers a useful result, but can be improved,
especially for the estimates toward dawn and dusk, by
using polynomial-based kernel regression. A procedure
based on quantile regression is suggested for calculating
the varying intervals of the uncertainty of the solar power
predictions and the results agree with other studies. The
best performing prediction model is an ARX model where
both solar power observations and NWPs are used as
input. The results indicate that for horizons below 2-h solar
power is the most important input, but for next day hori-
zons no considerable improvement is achieved from using
available values of solar power, so it is adequate just to
use NWPs as input. Thus, depending on the application
of the forecasting system using only either of the inputs
can be considered, and a lower limit of the latency, at
which solar power observations are needed for the forecast-
ing system, can be different. Finally, it is noted that a com-
parison to other online solar power forecasting methods,
e.g. Lorenz et al. (2007) and Hocaoglu et al. (2008), has
not been carried out, but that such a study would be infor-
mative in order to describe strengths and accuracy of the
different proposed methods.
Appendix A. Weighted quantile regression

The solar power time series {pt, t = 1, . . .,N} is the real-
ization of a stochastic process {Pt, t = 1, . . .,N}. The esti-
mated clear sky solar power at time t is p̂cs

t and it is
found as the q quantile of fP t , the probability distribution
function of Pt. The problem is reduced to estimating p̂cs

t

as a local constant for each (xt,yt), where x is the day of
year and y the time of day. This is done by weighted quan-
tile regression in which the loss function is

qðq; �iÞ ¼
q�i; �i P 0;

ð1� qÞ�i; �i < 0;

�
ð36Þ
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where �i ¼ pi � p̂cs
t . The fitting of p̂cs

t is then done by

p̂cs
t ¼ arg min

p̂cs
t

XN

i¼1

kðxt; yt; xi; yiÞ � qðq; �iÞ; ð37Þ

where

kðxt; yt; xi; yiÞ ¼
wðxt; xi; hxÞ � wðyt; yi; hyÞPN
i¼1wðxt; xi; hxÞ � wðyt; yi; hyÞ

ð38Þ

is the two-dimensional multiplicative kernel function which
weights the observations locally to (xt,yt) (Hastie and Tibsh-
irani, 1993). Details of the minimization are found in
Koenker (2005). In each dimension a Gaussian kernel is used

wðxt; xi; hxÞ ¼ fstd
jxt � xij

hx

� �
; ð39Þ

where fstd is the standard normal probability density func-
tion. A similar kernel function is used in the y dimension,
and the final two-dimensional kernel is found by multiply-
ing the two kernels as shown in (37).
Appendix B. Recursive least squares

Fitting of the prediction models is done using k-step
recursive least squares (RLS) with forgetting, which is
described in the following using the ARX model

stþk ¼ mþ a1st þ a2st�sðkÞ þ b1ŝ
nwp
tþkjt þ etþk; ð40Þ

as an example. The regressor at time t is

XT
t ¼ 1; st; st�sðkÞ; ŝ

nwp
tþkjt

	 

: ð41Þ

The parameter vector is

hT ¼ ðm; a1; a2; b1Þ; ð42Þ
and the dependent variable

Y t ¼ st: ð43Þ
Hence the model can be written as

Y t ¼ XT
t hþ et: ð44Þ

The estimates of the parameters at t are found such that

ĥt ¼ arg min
h

StðhÞ; ð45Þ

where the loss function is

StðhÞ ¼
Xt

s¼1

kt�s Y s � XT
s h

� �2
: ð46Þ

This provides weighted least squares with exponential for-
getting. The solution at time t leads to

ĥt ¼ R�1
t ht; ð47Þ
see Madsen (2007), where

Rt ¼
Xt

s¼1

kt�sXsX
T
s ; ht ¼

Xt

s¼1

kt�sXsY s: ð48Þ

The k-step RLS-algorithm with exponential forgetting is
then

Rt ¼ kRt�1 þ Xt�kXT
t�k; ð49Þ

ĥt ¼ ĥt�1 þ R�1
t Xt�k Y t � XT

t�k ĥt�1

	 

; ð50Þ

and the k-step prediction at t is

bY tþk ¼ XT
t ĥt: ð51Þ
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