

Time Series Analysis

Spring 2024

Peder Bacher and Pernille Yde Nielsen February 9, 2024

Outline of the lecture

- Regression based methods, 1st part:
 - Ordinary Least Squares (OLS)
 - Predictions = forecast
 - Global Trend Model
 - Weighted Least Squares (WLS)

General form of the regression model

$$Y_t = f(\boldsymbol{X}_t, t; \boldsymbol{\theta}) + \varepsilon_t$$

General form of the regression model

$$Y_t = f(\boldsymbol{X}_t, t; \boldsymbol{\theta}) + \varepsilon_t$$

- Y_t is the output we aim to model
- $oldsymbol{X}_t$ indicates the p independent variables $oldsymbol{X}_t = (X_{1t}, \cdots, X_{pt})^T$
- t is the time index
- $oldsymbol{ heta}$ indicates m unknown parameters $(heta_1,\cdots, heta_m)^T$
- ε_t is a sequence of random variables with mean zero, variance σ_t^2 , and $\text{Cov}[\varepsilon_{t_i}, \varepsilon_{t_i}] = \sigma_t^2 \Sigma_{ij}$

General form of the regression model

$$Y_t = f(\boldsymbol{X}_t, t; \boldsymbol{\theta}) + \varepsilon_t$$

- Y_t is the output we aim to model
- $oldsymbol{X}_t$ indicates the p independent variables $oldsymbol{X}_t = (X_{1t}, \cdots, X_{pt})^T$
- t is the time index
- $oldsymbol{ heta}$ indicates m unknown parameters $(heta_1,\cdots, heta_m)^T$
- ε_t is a sequence of random variables with mean zero, variance σ_t^2 , and $\text{Cov}[\varepsilon_{t_i}, \varepsilon_{t_j}] = \sigma_t^2 \Sigma_{ij}$

For now we restrict the discussion to the case where X_t is non-random and thus we write x_t instead of X_t .

Outline of the lecture

- Regression based methods, 1st part:
 - Ordinary Least Squares (OLS)
 - •
 - •
 - •

6

Ordinary Least Squares (OLS)

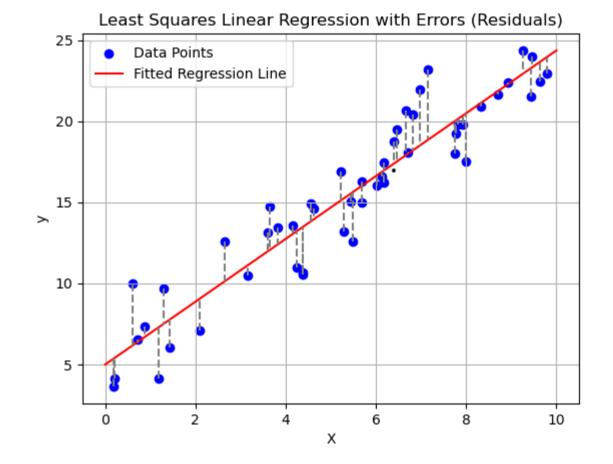
Observations (data):

$$(y_1$$
 , $oldsymbol{x}_1)$, $(y_2$, $oldsymbol{x}_2)$, \cdots , $(y_n$, $oldsymbol{x}_n)$

OLS estimates (of the parameters) are found by minimizing the sum of squared residuals:

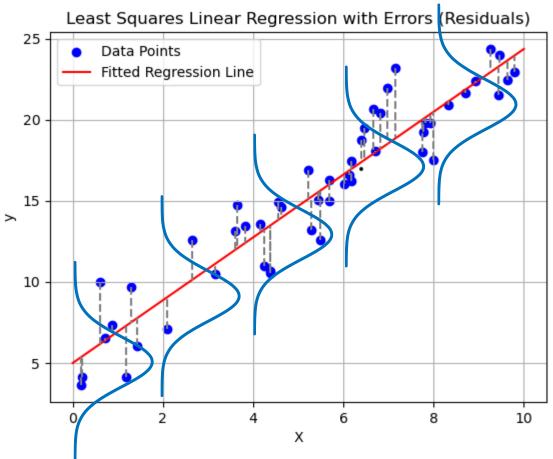
$$S(\boldsymbol{\theta}) = \sum_{t=1}^{n} [y_t - f(\boldsymbol{x}_t; \boldsymbol{\theta})]^2 = \sum_{t=1}^{n} \varepsilon_t^2(\boldsymbol{\theta})$$

(sometimes also called "RSS")



Errors must be assumed to all have the same variance and be mutually uncorrelated

Errors are "i.i.d"

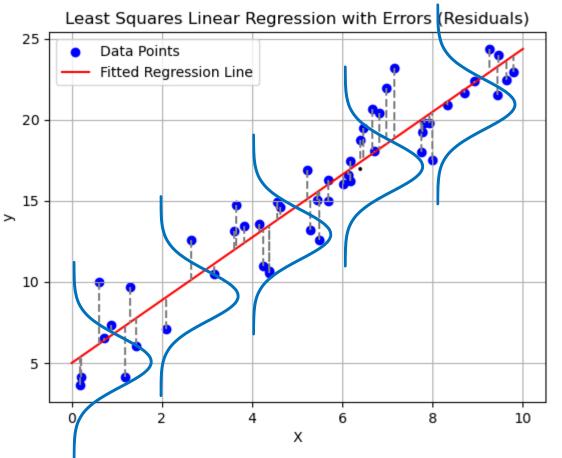


8

Errors must be assumed to all have the same variance and be mutually uncorrelated

Errors are "i.i.d"

 $Cov[\varepsilon_{t_i}, \varepsilon_{t_j}] = \sigma_t^2 \Sigma_{ij}$ $\Sigma = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$



9

OLS – variance of model errors and of parameters

The variance of the model errors is estimated as:

$$\widehat{\sigma}^2 = \frac{S(\widehat{\boldsymbol{\theta}})}{n-p}$$

where p is the number of estimated parameters.

The variance-covariance matrix of the estimates is approximately

$$V[\widehat{\boldsymbol{\theta}}] = 2\widehat{\sigma}^2 \left[\frac{\partial^2}{\partial^2 \boldsymbol{\theta}} S(\boldsymbol{\theta}) \right]^{-1} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}}$$

$$Y_t = \boldsymbol{x}_t^T \boldsymbol{\theta} + \boldsymbol{\varepsilon}_t$$

$$Y_t = \boldsymbol{x}_t^T \boldsymbol{\theta} + \boldsymbol{\varepsilon}_t$$

Is this model a GLM?

$$Y_t = \theta_0 + \theta_1 z_t + \varepsilon_t$$

$$Y_t = \boldsymbol{x}_t^T \boldsymbol{\theta} + \boldsymbol{\varepsilon}_t$$

Is this model a GLM?

$$Y_t = \theta_0 + \theta_1 z_t + \varepsilon_t$$

Yes, what about this one?

$$Y_t = \theta_0 + \theta_1 z_t + \theta_2 z_t^2 + \varepsilon_t$$

$$Y_t = \boldsymbol{x}_t^T \boldsymbol{\theta} + \boldsymbol{\varepsilon}_t$$

Is this model a GLM?

$$Y_t = \theta_0 + \theta_1 z_t + \varepsilon_t$$

Yes, what about this one?

$$Y_t = \theta_0 + \theta_1 z_t + \theta_2 z_t^2 + \varepsilon_t$$

Also yes, since it can be written as

$$y_t = \begin{pmatrix} 1 & z_t & z_t^2 \end{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} + \varepsilon_t$$

$$Y_t = \boldsymbol{x}_t^T \boldsymbol{\theta} + \boldsymbol{\varepsilon}_t$$

Is this model a GLM?

$$Y_t = \theta_0 + \theta_1 z_t + \varepsilon_t$$

Yes, what about this one?

$$Y_t = \theta_0 + \theta_1 z_t + \theta_2 z_t^2 + \varepsilon_t$$

Also yes, since it can be written as

$$y_t = \begin{pmatrix} 1 & z_t & z_t^2 \end{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} + \varepsilon_t$$

It is linearity in the parameters that matters!

For all observations the model equations are written as:

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} \boldsymbol{x}_1^T \\ \vdots \\ \boldsymbol{x}_n^T \end{bmatrix} \boldsymbol{\theta} + \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{bmatrix} \quad or \quad \boldsymbol{Y} = \boldsymbol{x}\boldsymbol{\theta} + \boldsymbol{\varepsilon}$$

"Design Matrix"

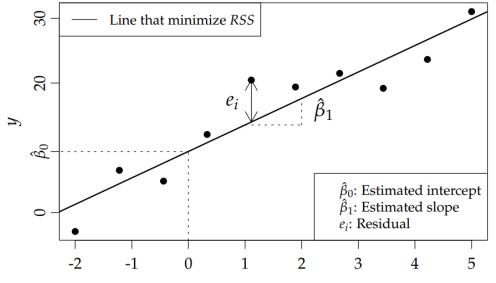
For all observations the model equations are written as:

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} \boldsymbol{x}_1^T \\ \vdots \\ \boldsymbol{x}_n^T \end{bmatrix} \boldsymbol{\theta} + \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{bmatrix} \quad or \quad \boldsymbol{Y} = \boldsymbol{x}\boldsymbol{\theta} + \boldsymbol{\varepsilon}$$

"Design Matrix"

Ex: Simple linear regression:

$$Y_{i} = \beta_{0} + \beta_{1}x_{i} + \varepsilon_{i}, \quad i = \{1, \dots, n\}$$
$$\begin{bmatrix} Y_{1} \\ \vdots \\ Y_{n} \end{bmatrix} = \begin{bmatrix} 1 & x_{1} \\ \vdots & \vdots \\ 1 & x_{n} \end{bmatrix} \begin{bmatrix} \beta_{0} \\ \beta_{1} \end{bmatrix} + \begin{bmatrix} \varepsilon_{1} \\ \vdots \\ \varepsilon_{n} \end{bmatrix}$$



OLS estimates for the general linear model

We minimise
$$S(\boldsymbol{\theta}) = \boldsymbol{\varepsilon}^T \boldsymbol{\varepsilon} = (\boldsymbol{Y} - \boldsymbol{x}\boldsymbol{\theta})^T (\boldsymbol{Y} - \boldsymbol{x}\boldsymbol{\theta})$$
, by solving $\frac{\partial}{\partial \hat{\boldsymbol{\theta}}} S(\hat{\boldsymbol{\theta}}) = 0$.

$$S(\boldsymbol{\theta}) = (\boldsymbol{Y} - \boldsymbol{x}\boldsymbol{\theta})^T (\boldsymbol{Y} - \boldsymbol{x}\boldsymbol{\theta})$$
$$\nabla_{\boldsymbol{\theta}} S(\boldsymbol{\theta}) = -2\boldsymbol{x}^T (\boldsymbol{Y} - \boldsymbol{x}\boldsymbol{\theta}) = \boldsymbol{0}$$

$$x^T x \theta = x^T Y$$

The solution is $\widehat{oldsymbol{ heta}} = (oldsymbol{x}^{\,T}oldsymbol{x})^{-1}oldsymbol{x}^{\,T}oldsymbol{Y}$

OLS estimates for the general linear model

Point estimate of parameters:

$$\widehat{\boldsymbol{\theta}} = (\boldsymbol{x}^T \boldsymbol{x})^{-1} \boldsymbol{x}^T \boldsymbol{Y}$$

Variance of parameters:

$$\operatorname{Var}[\widehat{\boldsymbol{\theta}}] = \operatorname{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})^{T}\right] = \sigma^{2}(\boldsymbol{x}^{T}\boldsymbol{x})^{-1}$$

Or approximately:

$$V[\widehat{\boldsymbol{\theta}}] = 2\widehat{\sigma}^2 \left[\frac{\partial^2}{\partial^2 \boldsymbol{\theta}} S(\boldsymbol{\theta}) \right]^{-1} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}}$$

Estimate of the variance of residuals:

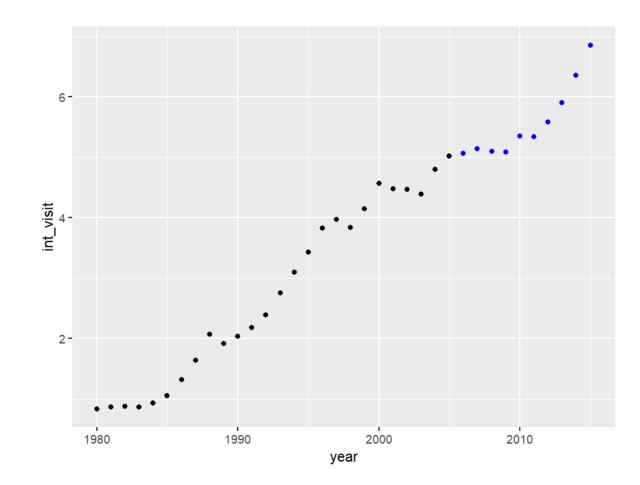
$$\widehat{\sigma}^2 = \boldsymbol{\varepsilon}^T \boldsymbol{\varepsilon} / (n-p)$$

Properties of the OLS-estimator of a GLM

- It is a linear function of the observations Y (and \widehat{Y} is thus a linear function of the observations)
- ▶ It is unbiased, i.e. $E[\widehat{\theta}] = \theta$

•
$$V[\widehat{\boldsymbol{\theta}}] = E\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})^T\right] = \sigma^2 (\boldsymbol{x}^T \boldsymbol{x})^{-1}$$

• $\hat{\theta}$ is BLUE (Best Linear Unbiased Estimator), which means that it has the smallest variance among all estimators which are a linear function of the observations.



> prin	t(X)		
	[,1]	[,2]	
[1,]	1	1980	
[2,]	1		
[3,]	1	1982	
[4,]	1		
[4,] [5,]	1		
[6,]	1		
[7,]	1	1986	
[8,]	1	1987	
[9,]	1		
[10,]	1	1989	
[11,]		1990	
[12,] [13,]		1991	
[13,]	1		
[14,]		1993	
[15,] [16,]		1994	
[16,]	1		
[17,] [18,]	1		
[18,]	1		
[19,]	1		
[20,]	1		
[21,]		2000	
[22,]	1		
[23,]		2002	
[24,]		2003	
[25,]		2004	
[26,]	1	2005	

> print(y)
[,1]
[1,] 0.8298943
[2,] 0.8595109
[3,] 0.8766892
[4,] 0.8667072
[5,] 0.9320520
[6,] 1.0482636
[7,] 1.3111932
[8,] 1.6375623
[9,] 2.0641074
[10,] 1.9126828
[11,] 2.0354457
[12,] 2.1772113
[13,] 2.3896834
[14,] 2.7505921
[15,] 3.0906664
[16,] 3.4266403
[17,] 3.8306491
[18,] 3.9719086
[19,] 3.8316004
[20,] 4.1431010
[21,] 4.5665510
[22,] 4.4754100
[23,] 4.4627960
[24,] 4.3848290
[25,] 4.7968610
[26,] 5.0150490

$$\widehat{\boldsymbol{\theta}} = (\boldsymbol{x}^T \boldsymbol{x})^{-1} \boldsymbol{x}^T \boldsymbol{Y}$$

OLS <- solve(t(X)%*%X)%*%t(X)%*%y

theta_0	<-	OLS[1]
theta_1	<-	OLS[2]

Parameter estimates

> prin	it(X)		
	٢.1٦	[,2]	
[1,]	1	1980	
[2,]	1	1981	
[3,]	1	1982	
[4,]	1	1983	
[5,]	1	1984	
[6,]	1		
[7,]	1	1986	
[8,]	1	1987	
[9,]		1988	
[10,]	1		
[11,]		1990	
[12,]	1	1991	
[13.]	1		
[14,] [15,]		1993	
[15,]		1994	
[16,]		1995	
[17,] [18,]	1	1996	
[18,]		1997	
[19,]	1		
[20,]	1		
[21,]		2000	
[22,]	1		
[23,]		2002	
[24,]		2003	
[25,]		2004	
[26,]	1	2005	

<pre>> print(y)</pre>
[,1]
[1,] 0.8298943
[2,] 0.8595109
[3,] 0.8766892
[4,] 0.8667072
[5,] 0.9320520
[6,] 1.0482636
[7,] 1.3111932
[8,] 1.6375623
[9,] 2.0641074
[10,] 1.9126828
[11,] 2.0354457
[12,] 2.1772113
[13,] 2.3896834
[14,] 2.7505921
[15,] 3.0906664
[16,] 3.4266403
[17,] 3.8306491
[18,] 3.9719086
[19,] 3.8316004
[20,] 4.1431010
[21,] 4.5665510
[22,] 4.4754100
[23,] 4.4627960
[24,] 4.3848290
[25,] 4.7968610
[26,] 5.0150490

$$\widehat{\boldsymbol{\theta}} = (\boldsymbol{x}^T \boldsymbol{x})^{-1} \boldsymbol{x}^T \boldsymbol{Y}$$

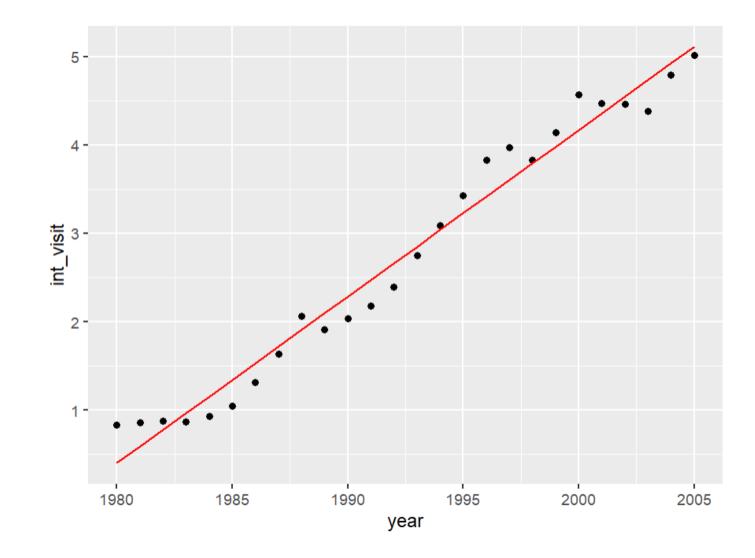
OLS <- solve(t(X)%*%X)%*%t(X)%*%y

theta_0	<-	OLS[1]
theta_1	<-	OLS[2]

Parameter estimates

$$\hat{Y}=x\hat{ heta}$$

Predicted values



e_ols <- y - yhat_ols

RSS_ols <- t(e_ols)%*%e_ols

sigma2_ols <- as.numeric(RSS_ols/(n - nparam</pre>

V_ols <- sigma2_ols * solve(t(X) %*% X)</pre>

$$\widehat{\sigma}^2 = \boldsymbol{\varepsilon}^T \boldsymbol{\varepsilon} / (n - p)$$
$$\operatorname{Var}[\widehat{\boldsymbol{\theta}}] = \operatorname{E}\left[\widehat{(\boldsymbol{\theta} - \boldsymbol{\theta})}\widehat{(\boldsymbol{\theta} - \boldsymbol{\theta})}^T\right] = \sigma^2 (\boldsymbol{x}^T \boldsymbol{x})^{-1}$$

T

 ~ 0

> pri	int(V_ols)	
	[,1]	[,2]
[1,]	165.6609970	-8.314110e-02
[2,]	-0.0831411	4.172703e-05

se_theta_0 <- (sqrt(diag(V_ols)))[1]</pre> se_theta_1 <- (sqrt(diag(V_ols)))[2]</pre> Now we have estimated the parameters AND their standard error

Outline of the lecture

- Regression based methods, 1st part:
 - Ordinary Least Squares (OLS)
 - Predictions = forecast
 - ٠
 - •

DTU Prediction in the general linear model

If the expected value of the squared prediction error is to be minimized, then the expected mean E[Y|X = x] is the optimal predictor.

$$Y_t = \boldsymbol{x}_t^T \boldsymbol{\theta} + \boldsymbol{\varepsilon}_t$$

Prediction in the general linear model

If the expected value of the squared prediction error is to be minimized, then the expected mean E[Y|X = x] is the optimal predictor.

$$Y_t = \boldsymbol{x}_t^T \boldsymbol{\theta} + \boldsymbol{\varepsilon}_t$$

Known parameters:

$$\widehat{Y}_t = E_{\theta}[Y_t | \boldsymbol{X}_t = \boldsymbol{x}_t] = \boldsymbol{x}_t^T \boldsymbol{\theta}$$
$$V_{\theta}[Y_t - \widehat{Y}_t] = V_{\theta}[\boldsymbol{\varepsilon}_t] = \sigma^2$$

Prediction in the general linear model

If the expected value of the squared prediction error is to be minimized, then the expected mean E[Y|X = x] is the optimal predictor.

$$Y_t = \boldsymbol{x}_t^T \boldsymbol{\theta} + \boldsymbol{\varepsilon}_t$$

Known parameters:

$$\widehat{Y}_t = E_{\theta}[Y_t | \boldsymbol{X}_t = \boldsymbol{x}_t] = \boldsymbol{x}_t^T \boldsymbol{\theta}$$
$$V_{\theta}[Y_t - \widehat{Y}_t] = V_{\theta}[\boldsymbol{\varepsilon}_t] = \sigma^2$$

Estimated parameters:

$$\widehat{Y}_t = E_{\widehat{\boldsymbol{ heta}}}[Y_t | \boldsymbol{X}_t = \boldsymbol{x}_t] = \boldsymbol{x}_t^T \widehat{\boldsymbol{ heta}}$$

$$V_{\widehat{\theta}}[Y_t - \widehat{Y}_t] = V_{\widehat{\theta}}[\varepsilon_t + \boldsymbol{x}_t^T(\theta - \widehat{\theta})] = \widehat{\sigma}^2[1 + \boldsymbol{x}_t^T(\boldsymbol{x}^T\boldsymbol{x})^{-1}\boldsymbol{x}_t]$$

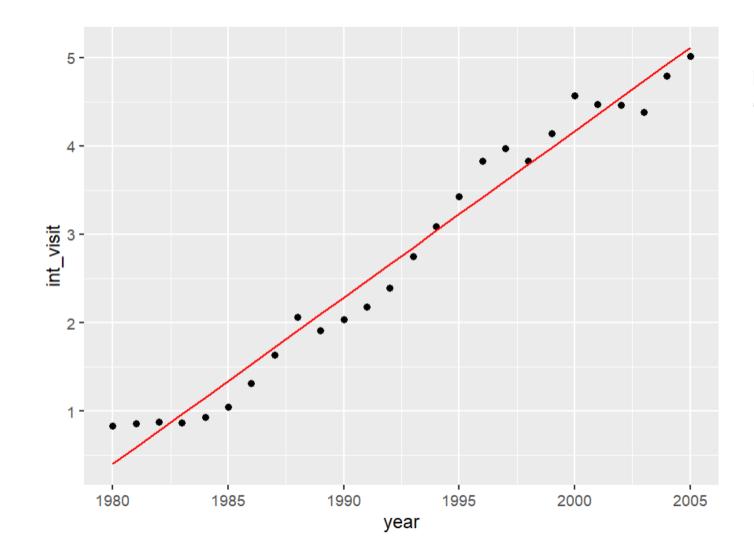
Prediction in the general linear model, continued

Prediction interval for the predicted values:

$$\widehat{Y}_t \pm t_{\alpha/2}(n-p)\widehat{\sigma}\sqrt{1+\boldsymbol{x}_t^T(\boldsymbol{x}^T\boldsymbol{x})^{-1}\boldsymbol{x}_t}$$

Here $t_{\alpha/2}(n-p)$ refers to a percentile in the t-distribution with n-p degrees of freedom. If n-p is large, percentiles from the normal distribution can be used.

In time series analysis: Prediction of future values = "forecast"



Lets make predictions (forecast) for the next 10 years

> print	t(Xte	est)
	[,1]	[,2]
[1,]	1	2006
[2,]	1	2007
[3,]	1	2008
[4,]	1	2009
[5,]	1	2010
[6,]	1	2011
[7,]	1	2012
[8,]	1	2013
[9,]	1	2014
[10,]	1	2015

$$\widehat{Y}_t = E_{\widehat{\theta}}[Y_t | \boldsymbol{X}_t = \boldsymbol{x}_t] = \boldsymbol{x}_t^T \widehat{\boldsymbol{\theta}}$$

y_pred <- Xtest%*%OLS

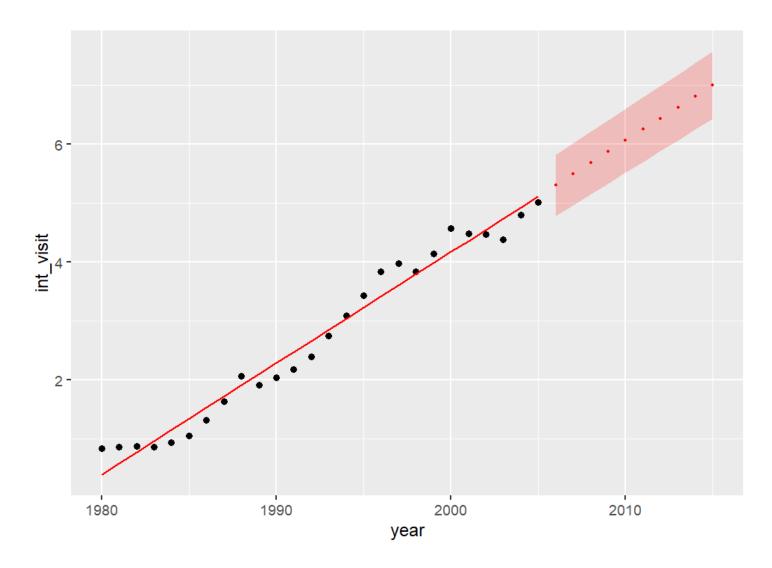
 $\widehat{\sigma}^2 [1 + \boldsymbol{x}_t^T (\boldsymbol{x}^T \boldsymbol{x})^{-1} \boldsymbol{x}_t]$

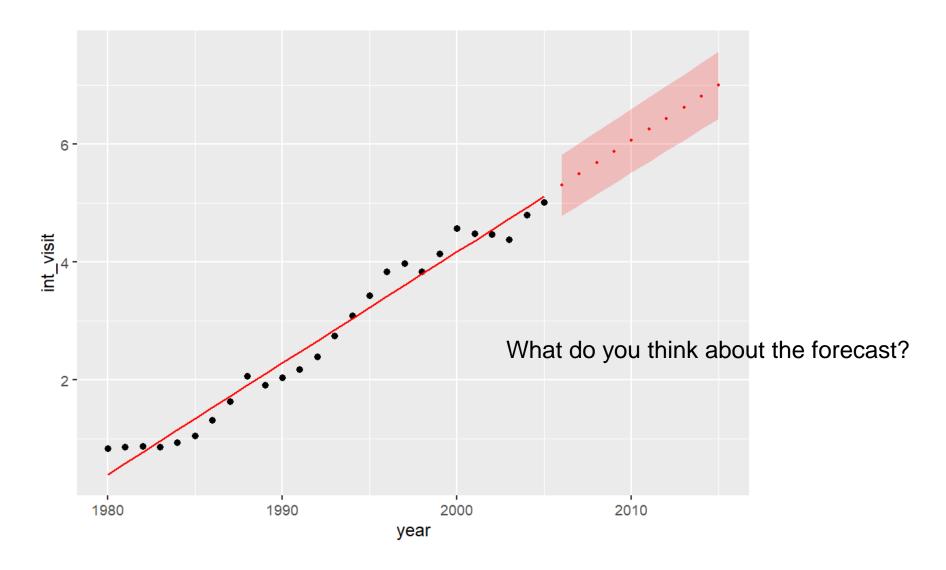
Vmatrix_pred <- sigma2_ols*(1+(Xtest%*%solve(t(X)%*%X))%*%t(Xtest))</pre>

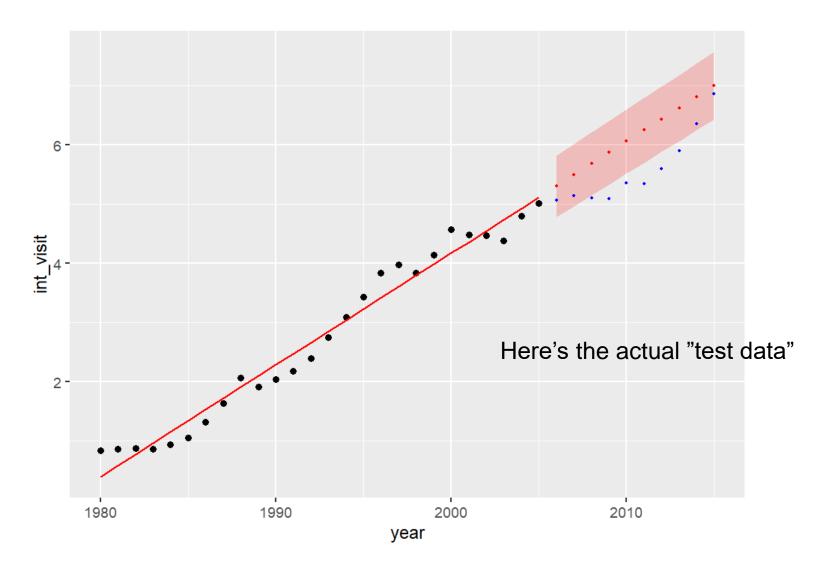
$$\widehat{Y}_t \pm t_{\alpha/2}(n-p)\widehat{\sigma}\sqrt{1 + \boldsymbol{x}_t^T(\boldsymbol{x}^T\boldsymbol{x})^{-1}\boldsymbol{x}_t}$$

$$\textbf{y_pred_lwr <- y_pred - 1.96*sqrt(diag(Vmatrix_pred))}$$

y_pred_upr <- y_pred + 1.96*sqrt(diag(Vmatrix_pred))</pre>







Outline of the lecture

- Regression based methods, 1st part:
 - Ordinary Least Squares (OLS)
 - Predictions = forecast
 - Global Trend Model
 - •

Sneakpeak at "Trend Models"

Trend models are:

- Linear regression models
- The independent variables are functions of time
- The reference time is often the latest timepoint instead of the "origin"
- Notation is a bit different the principle is the same

$$Y_{N+j} = f^T(j)\boldsymbol{\theta} + \boldsymbol{\varepsilon}_{N+j}$$

Today we will only talk about **global** trend models

Sneakpeak at "Trend Models"

Trend models are:

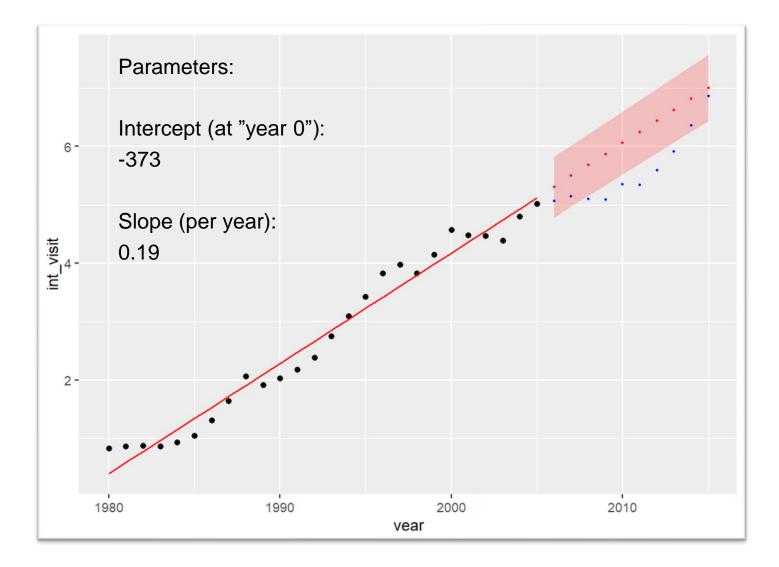
- Linear regression models
- The independent variables are functions of time
- The reference time is often the latest timepoint instead of the "origin"
- Notation is a bit different the principle is the same

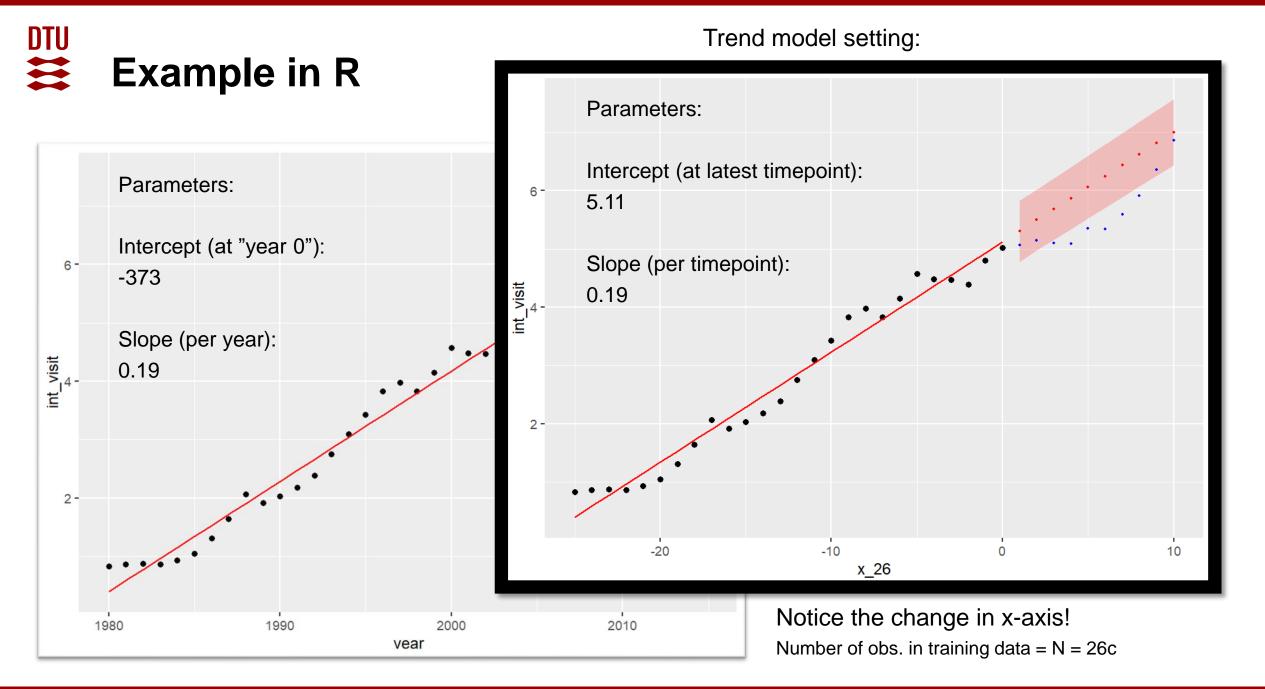
$$Y_{N+j} = f^T(j)\boldsymbol{\theta} + \boldsymbol{\varepsilon}_{N+j}$$

N refers to the "latest" timepoint in the data – this is our reference timepoint (="now") If we put j=0, we get the estimate "now"

j = 1,2,3,... refers to future timepoints

The data available to estimate the model is the data from j = 0, -1, -2, -3, ...





The linear trend model

► The general trend model:

$$Y_{N+j} = \boldsymbol{f}^T(j)\boldsymbol{\theta} + \boldsymbol{\varepsilon}_{N+j}$$

The linear trend model is obtained when: $\boldsymbol{f}(j) = \left(\begin{array}{c} 1\\ j \end{array} \right)$

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_N \end{bmatrix} = \begin{bmatrix} \boldsymbol{f}^T(-N+1) \\ \boldsymbol{f}^T(-N+2) \\ \vdots \\ \boldsymbol{f}^T(0) \end{bmatrix} \boldsymbol{\theta}_N + \begin{bmatrix} \boldsymbol{\varepsilon}_1 \\ \boldsymbol{\varepsilon}_2 \\ \vdots \\ \boldsymbol{\varepsilon}_N \end{bmatrix}$$

"Design-

changes

Matrix"

> print	t (X)	
	[,1]	[,2]
[1,]	1	1980
[2,]	1	1981
[3,]	1	1982
[4,]	1	1983
[5,]	1	1984
[6,]	1	1985
[7,]	1	1986
[8,]	1	1987
[9,]	1	1988
[10,]	1	1989
[11,]	1	1990
[12,]	1	1991
[13,]	1	1992
[14,]	1	1993
[15,]	1	1994
[16,]	1	1995
[17,]	1	1996
[18,]	1	1997
[19,]	1	1998
[20,]	1	1999
[21,]	1	2000
[22,]	1	2001
[23,]	1	2002
[24,]	1	2003
[25,]	1	2004
[26,]	1	2005

> prir	nt(X_N	1)
	[,1] 1	[,2]
[1,]	1	-25
Г 2 Т	1 1	-24
[3,]	1	-23
[2,] [3,] [4,] [5,] [6,] [7,]	1	-22
[5,]	1	-21
[6,]	1	-20
[7,]	1	-19
	1	-18
[9,]	1	-17
[10,]	1	-16
[11,]	1	-15
[12,] [13,]	1	-14
[13,]	1	-13
[14,] [15,] [16,]	1	-12
[15,]	1 1	-11
[16,]		-10
[17,]	1	-9
[18,]	1 1	-8
[19,]	1	-8 -7
[20,]	1	-6
[21,]	1	-5
[22,]	1	-4
[23,]	1	-5 -4 -3 -2
[24,]	1 1	-2
[25,]	1	-1
[26,]	1	0

	> print(y)
Vector of y-values stays the same	<pre>> print(y) [,1] [1,] 0.8298943 [2,] 0.8595109 [3,] 0.8766892 [4,] 0.8667072 [5,] 0.9320520 [6,] 1.0482636</pre>
	[7,] 1.3111932
	[8,] 1.6375623 [9,] 2.0641074
	[10,] 1.9126828
	[11,] 2.0354457 [12,] 2.1772113
	[13,] 2.3896834
	[14,] 2.7505921
	[15,] 3.0906664 [16,] 3.4266403
	[17,] 3.8306491
	[18,] 3.9719086
	[19,] 3.8316004 [20,] 4.1431010
	[21,] 4.5665510
	[22,] 4.4754100 [23,] 4.4627960
	[24,] 4.3848290
	[25,] 4.7968610
	[26,] 5.0150490

Trend model, OLS estimates

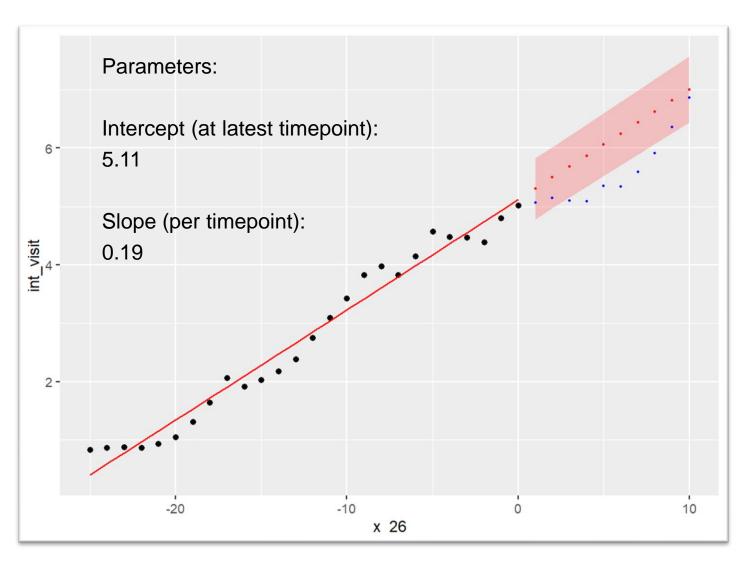
$$\begin{split} \mathbf{Y}_{N} &= \mathbf{x}_{N} \boldsymbol{\theta}_{N} + \mathbf{\varepsilon} \\ \begin{bmatrix} Y_{1} \\ Y_{2} \\ \vdots \\ Y_{N} \end{bmatrix} &= \begin{bmatrix} \mathbf{f}^{T}(-N+1) \\ \mathbf{f}^{T}(-N+2) \\ \vdots \\ \mathbf{f}^{T}(0) \end{bmatrix} \boldsymbol{\theta}_{N} + \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \vdots \\ \varepsilon_{N} \end{bmatrix} \\ \\ \hat{\boldsymbol{\theta}}_{N} &= (\mathbf{x}_{N}^{T}\mathbf{x}_{N})^{-1}\mathbf{x}_{N}^{T}\mathbf{Y}_{N} = \mathbf{F}_{N}^{-1}\mathbf{h}_{N} \\ \\ \hat{\boldsymbol{\theta}}_{N} &= (\mathbf{x}_{N}^{T}\mathbf{x}_{N})^{-1}\mathbf{x}_{N}^{T}\mathbf{Y}_{N} = \mathbf{F}_{N}^{-1}\mathbf{h}_{N} \\ \\ \mathbf{F}_{N} &= \mathbf{x}_{N}^{T}\mathbf{x}_{N} = \sum_{j=0}^{N-1} \mathbf{f}(-j)\mathbf{f}^{T}(-j) \\ \mathbf{h}_{N} &= \mathbf{x}_{N}^{T}\mathbf{Y} = \sum_{j=0}^{N-1} \mathbf{f}(-j)Y_{N-j} \end{split}$$
 It is still an OLS regression model! The notation is different

$$\mathbf{h}_{N} = \mathbf{x}_{N}^{T}\mathbf{Y} = \sum_{j=0}^{N-1} \mathbf{f}(-j)Y_{N-j} \end{split}$$

Estimating the parameters:

F_N <- t(X_N)%*%X_N h_N <- t(X_N)%*%y

theta_N <- solve(F_N)%*%h_N
print(theta_N)
[1,] 5.115330
[2,] 0.188649</pre>



Other trend models

- Constant mean: $Y_{N+j} = \theta_0 + \varepsilon_{N+j}$
- Linear trend: $Y_{N+j} = \theta_0 + \theta_1 j + \varepsilon_{N+j}$
- Quadratic trend: $Y_{N+j} = \theta_0 + \theta_1 j + \theta_2 \frac{j^2}{2} + \varepsilon_{n+j}$
- k'th order polynomial trend: $Y_{n+j} = \theta_0 + \theta_1 j + \theta_2 \frac{j^2}{2} + \cdots + \theta_k \frac{j^k}{k!} + \varepsilon_{N+j}$
- Harmonic model with the period p: $Y_{N+j} = \theta_0 + \theta_1 \sin \frac{2\pi}{p} j + \theta_2 \cos \frac{2\pi}{p} j + \varepsilon_{N+j}$

Trend model forecasting ("*l*-step predictions")

Prediction:

$$\widehat{Y}_{N+\ell|N} = \boldsymbol{f}^T(\ell)\widehat{\boldsymbol{\theta}}_N$$

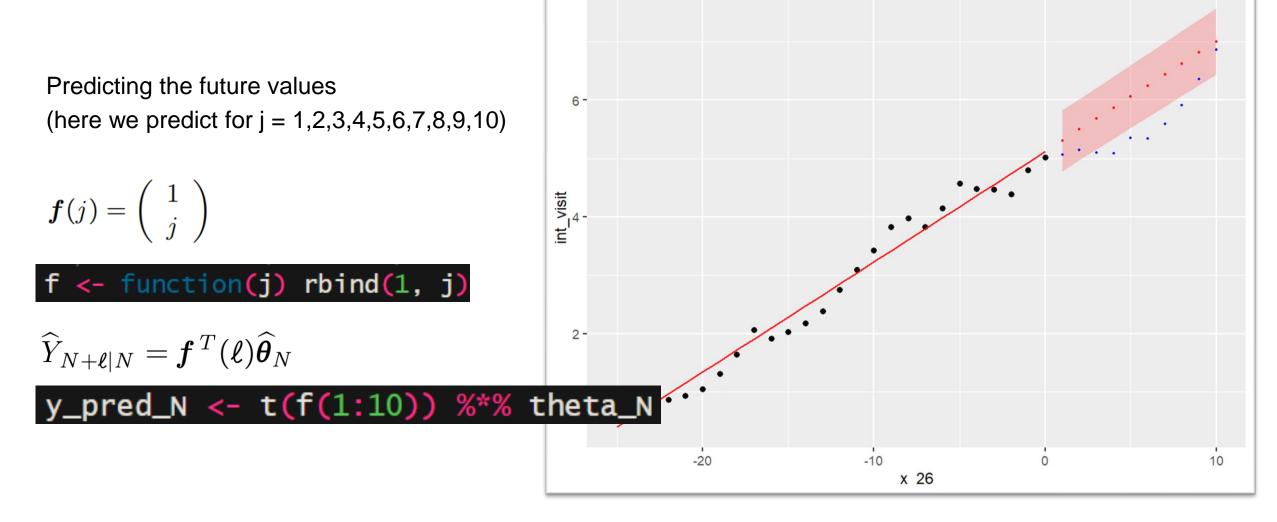
Variance of the prediction error:

$$V[Y_{N+\ell} - \widehat{Y}_{N+\ell|N}] = \sigma^2 \left[1 + \boldsymbol{f}^T(\boldsymbol{\ell})\boldsymbol{F}_N^{-1}\boldsymbol{f}(\boldsymbol{\ell})\right]$$

► $100(1 - \alpha)$ % prediction interval:

$$\widehat{Y}_{N+\ell|N} \pm t_{\alpha/2}(N-p)\sqrt{V[e_N(\ell)]}$$
$$= \widehat{Y}_{N+\ell|N} \pm t_{\alpha/2}(N-p)\widehat{\sigma}\sqrt{1+\boldsymbol{f}^T(\ell)\boldsymbol{F}_N^{-1}\boldsymbol{f}(\ell)}$$

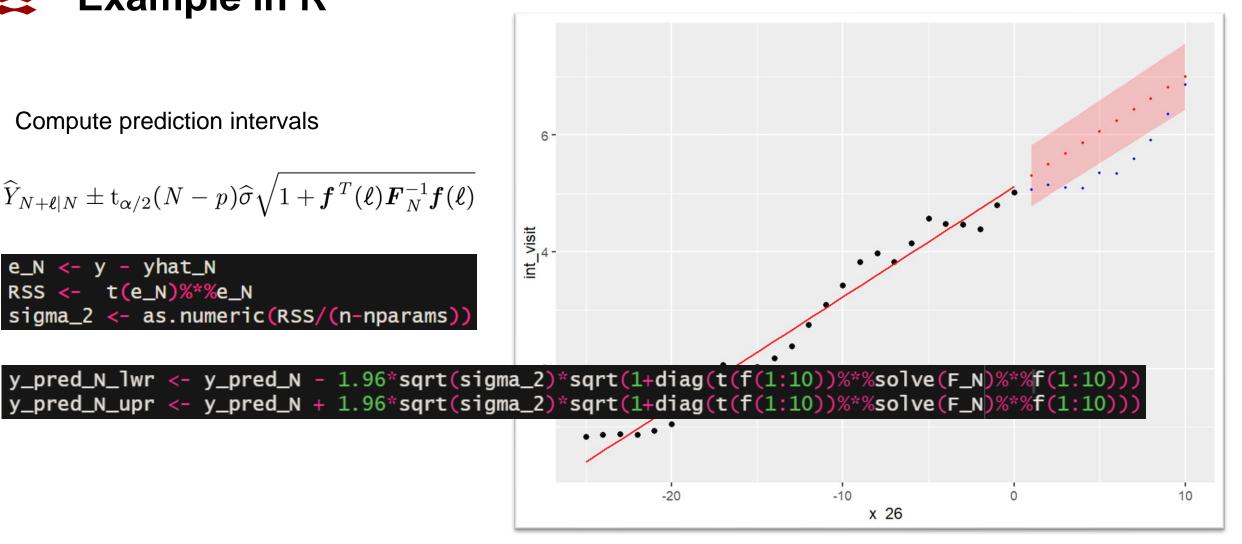
where $\hat{\sigma}^2 = \boldsymbol{\epsilon}^T \boldsymbol{\epsilon}/(N-p)$ (p is the number of estimated parameters)



Compute prediction intervals

$$\widehat{Y}_{N+\ell|N} \pm \mathrm{t}_{lpha/2}(N-p)\widehat{\sigma}\sqrt{1+f^{T}(\ell)F_{N}^{-1}f(\ell)}$$

e_N <- y - yhat_N RSS <- t(e_N)%*%e_N sigma_2 <- as.numeric(RSS/(n-nparams))</pre>



Why do all this ??

Iterative updates

Task:

- Going from estimates based on t = 1, ..., N, i.e. $\widehat{\theta}_N$ to
- estimates based on t = 1, ..., N, N+1, i.e. $\widehat{\theta}_{N+1}$
- without redoing everything...

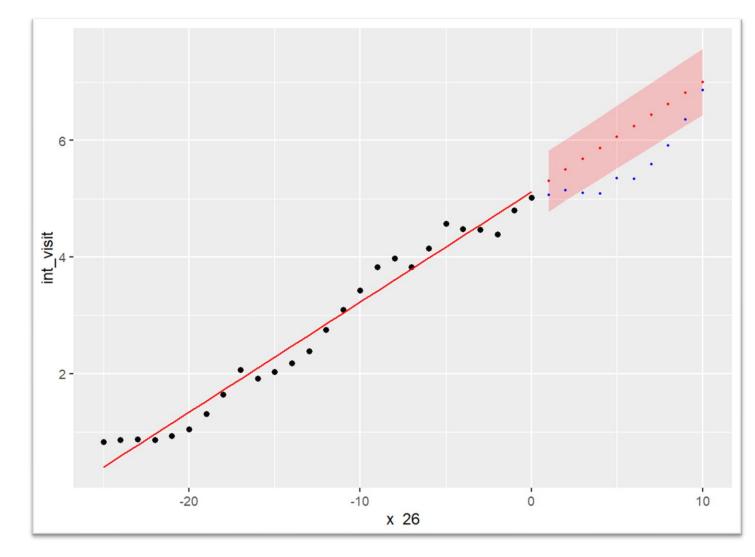
Solution:

$$F_{N+1} = F_N + f(-N)f^T(-N)$$

$$h_{N+1} = L^{-1}h_N + f(0)Y_{N+1}$$

$$\widehat{\theta}_{N+1} = F_{N+1}^{-1}h_{N+1}$$

Also iterative updates becomes smart, when we start doing **local** trend models (next week)



We get the next observation

We want to shift the x-axis to the latest observation

And redo the regression line

And redo the forecast

Updating the model

$$\boldsymbol{F}_{N+1} = \boldsymbol{F}_N + \boldsymbol{f}(-N)\boldsymbol{f}^T(-N)$$

$$\boldsymbol{h}_{N+1} = \boldsymbol{L}^{-1}\boldsymbol{h}_N + \boldsymbol{f}(0) Y_{N+1}$$

$$\boldsymbol{\widehat{\theta}}_{N+1} = \boldsymbol{F}_{N+1}^{-1}\boldsymbol{h}_{N+1}$$

 \boldsymbol{L} defines the transition from $\boldsymbol{f}(j)$ to $\boldsymbol{f}(j+1)$

$$\boldsymbol{f}(j+1) = \boldsymbol{L}\boldsymbol{f}(j)$$

Linear trend model

$$Y_{N+j} = \theta_0 + \theta_1 j + \varepsilon_{N+j}$$
 $\boldsymbol{L} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad \boldsymbol{f}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Quadratic trend model

$$Y_{N+j} = \theta_0 + \theta_1 j + \theta_2 \frac{j^2}{2} + \varepsilon_{N+j} \qquad \boldsymbol{L} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1/2 & 1 & 1 \end{pmatrix}, \quad \boldsymbol{f}(0) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

L matrix examples

k'th order polynomial trend

$$Y_{N+j} = \theta_0 + \theta_1 j + \theta_2 \frac{j^2}{2} + \dots + \theta_k \frac{j^k}{k!} + \varepsilon_{N+j}$$
$$\boldsymbol{L} = \begin{pmatrix} 1 & 0 & \dots & 0\\ 1 & 1 & \dots & 0\\ 1/2 & 1 & \dots & 0\\ 1/2 & 1 & \dots & 0\\ \vdots & \vdots & \vdots & \vdots\\ 1/k! & 1/(k-1)! & & 1 \end{pmatrix}, \quad \boldsymbol{f}(0) = \begin{pmatrix} 1\\ 0\\ 0\\ \vdots\\ 0 \end{pmatrix}$$

L matrix examples

Harmonic model with the period p

$$Y_{N+j} = \theta_0 + \theta_1 \sin\left(\frac{2\pi}{p}\right) j + \theta_2 \cos\left(\frac{2\pi}{p}\right) j + \varepsilon_{N+j}$$

$$\boldsymbol{L} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\left(\frac{2\pi}{p}\right) & \sin\left(\frac{2\pi}{p}\right)\\ 0 & -\sin\left(\frac{2\pi}{p}\right) & \cos\left(\frac{2\pi}{p}\right) \end{pmatrix}, \qquad \boldsymbol{f}(0) = \begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix}$$

> print(L)
[,1] [,2]
[1,] 1 0
[2,] 1 1
$$L = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

F_N_27 <- F_N + f(-n) %*% t(f(-n)) h_N_27 <- Linv %*% h_N + f(0)*ynew theta_N_27 <- solve(F_N_27)%*%h_N_27</pre>



Slight change from before:

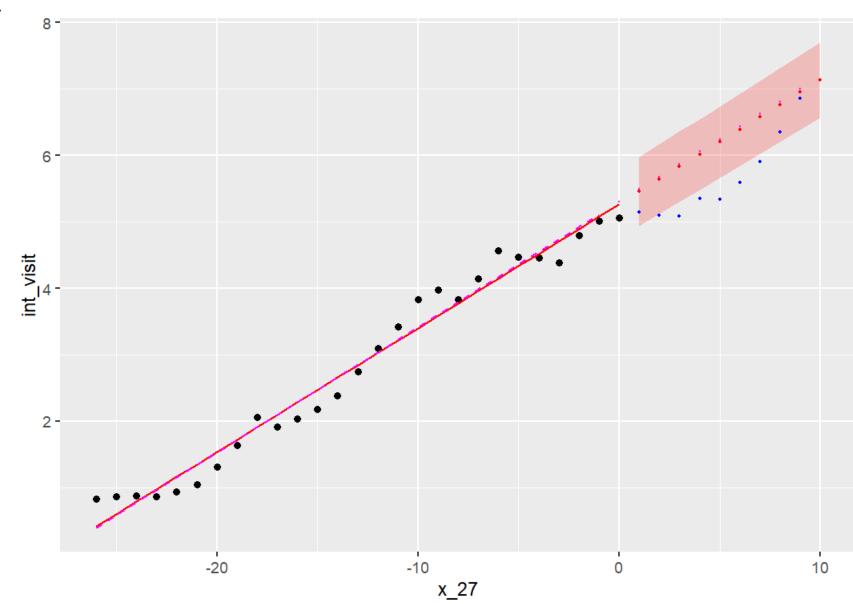
5.11

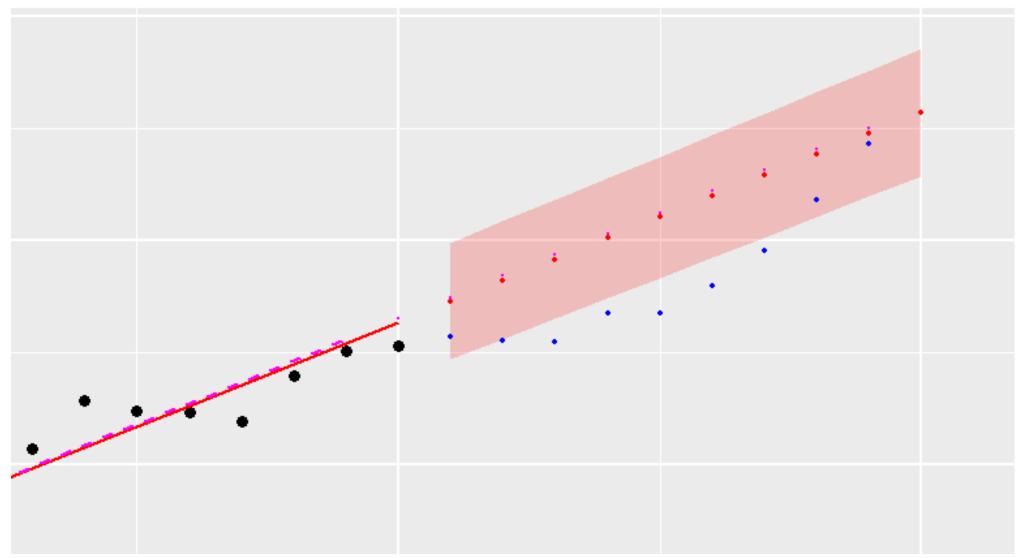
0.19

$$F_{N+1} = F_N + f(-N)f^T(-N)$$

$$h_{N+1} = L^{-1}h_N + f(0)Y_{N+1}$$

$$\widehat{\theta}_{N+1} = F_{N+1}^{-1}h_{N+1}$$





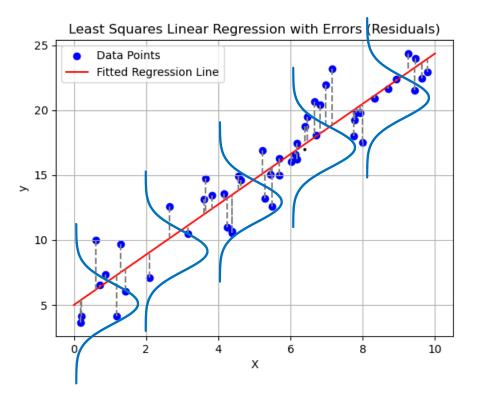
Outline of the lecture

- Regression based methods, 1st part:
 - Ordinary Least Squares (OLS)
 - Predictions = forecast
 - Global Trend Model
 - Weighted Least Squares (WLS)

Recall: OLS, minimizing the sum of squared residuals:

$$S(\boldsymbol{\theta}) = \sum_{t=1}^{n} [y_t - f(\boldsymbol{x}_t; \boldsymbol{\theta})]^2 = \sum_{t=1}^{n} \varepsilon_t^2(\boldsymbol{\theta})$$

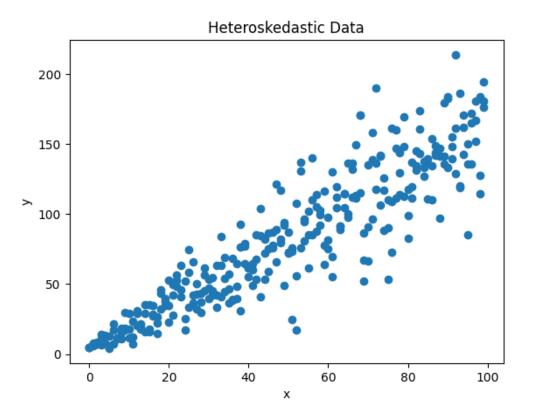
Where we assumed the residuals have the same variance and are mutually uncorrelated.



Recall: OLS, minimizing the sum of squared residuals:

$$S(\boldsymbol{\theta}) = \sum_{t=1}^{n} [y_t - f(\boldsymbol{x}_t; \boldsymbol{\theta})]^2 = \sum_{t=1}^{n} \varepsilon_t^2(\boldsymbol{\theta})$$

Where we assumed the residuals have the same variance and are mutually uncorrelated.



Recall: OLS, minimizing the sum of squared residuals:

$$S(\boldsymbol{\theta}) = \sum_{t=1}^{n} [y_t - f(\boldsymbol{x}_t; \boldsymbol{\theta})]^2 = \sum_{t=1}^{n} \varepsilon_t^2(\boldsymbol{\theta})$$

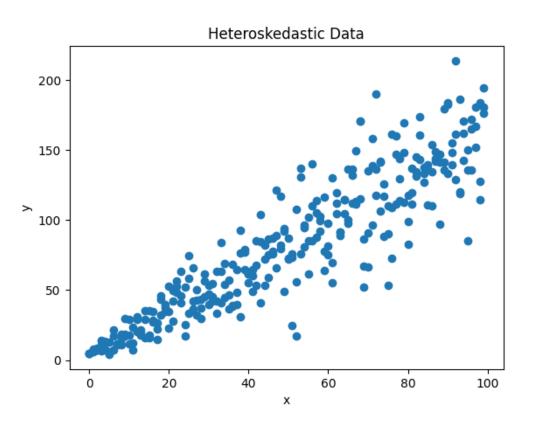
Where we assumed the residuals have the same variance and are mutually uncorrelated.

In WLS we assume the residuals can have different variances and be mutually correlated:

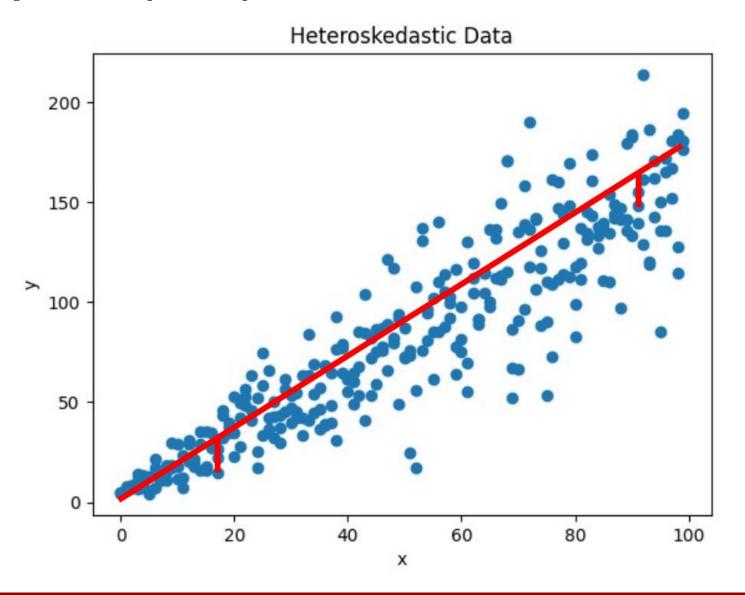
$$V[\boldsymbol{\varepsilon}] = E[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^T] = \sigma^2 \boldsymbol{\Sigma}$$

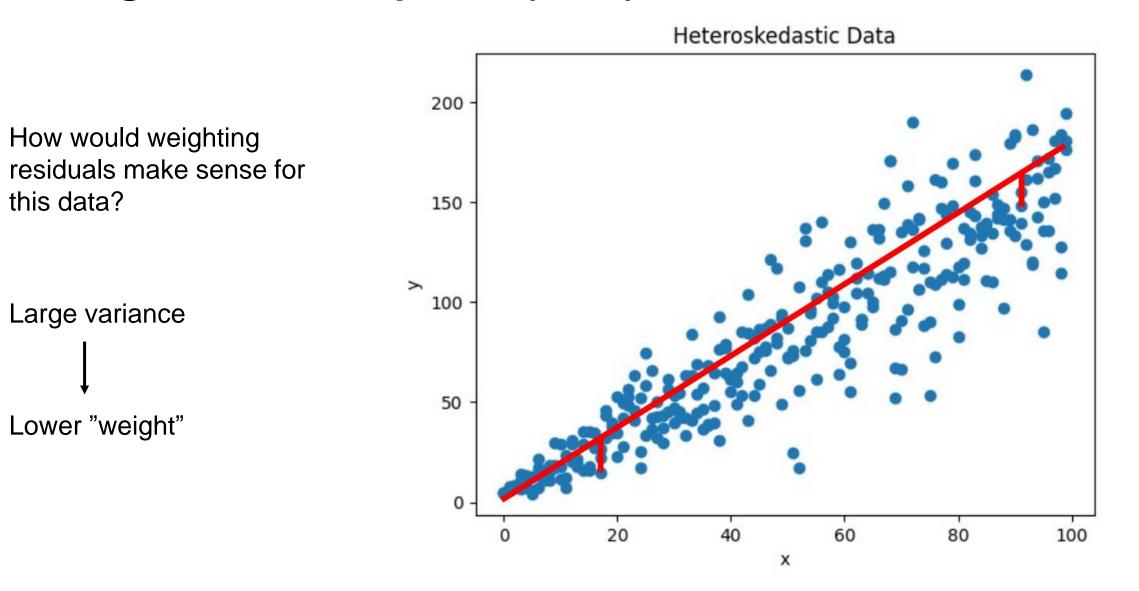
We minimize the *weighted* sum of squared residuals:

$$(\boldsymbol{Y} - \boldsymbol{x}\boldsymbol{\theta})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{Y} - \boldsymbol{x}\boldsymbol{\theta})$$



How would weighting residuals make sense for this data?





WLS estimates for the general linear model

For all observations the model equations are written as:

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} \boldsymbol{x}_1^T \\ \vdots \\ \boldsymbol{x}_n^T \end{bmatrix} \boldsymbol{\theta} + \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{bmatrix} \quad or \quad \boldsymbol{Y} = \boldsymbol{x}\boldsymbol{\theta} + \boldsymbol{\varepsilon}$$

We want to minimize $(\boldsymbol{Y} - \boldsymbol{x}\boldsymbol{\theta})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{Y} - \boldsymbol{x}\boldsymbol{\theta})$

The solution is

$$\widehat{oldsymbol{ heta}} = (oldsymbol{x}^T oldsymbol{\Sigma}^{-1} oldsymbol{x})^{-1} oldsymbol{x}^T oldsymbol{\Sigma}^{-1} oldsymbol{Y}$$

(if $\boldsymbol{x}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{x}$ is invertible)

$$\widehat{\sigma}^2 = \frac{1}{n-p} (\boldsymbol{Y} - \boldsymbol{x}\widehat{\boldsymbol{\theta}})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{Y} - \boldsymbol{x}\widehat{\boldsymbol{\theta}}) \quad V[\widehat{\boldsymbol{\theta}}] = E[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})^T] = (\boldsymbol{x}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{x})^{-1} \sigma^2$$

Maximum likelihood estimates

Assume that the observations are Gaussian;

 $oldsymbol{Y} \sim \mathrm{N}_n(oldsymbol{x}oldsymbol{ heta}$, $\sigma^2 oldsymbol{\Sigma})$

and that Σ is known.

► The ML-estimator is (here) the same as the WLS-estimator:

$$\widehat{\boldsymbol{\theta}} = (\boldsymbol{x}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{x})^{-1} \boldsymbol{x}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{Y}$$

• The ML-estimator for σ^2 is

$$\widehat{\sigma}^2 = \frac{1}{n} (\mathbf{Y} - \mathbf{x}\widehat{\mathbf{\theta}})^T \mathbf{\Sigma}^{-1} (\mathbf{Y} - \mathbf{x}\widehat{\mathbf{\theta}})$$

OLS and WLS estimates can be interpreted as? assumptions of Gaussianity.

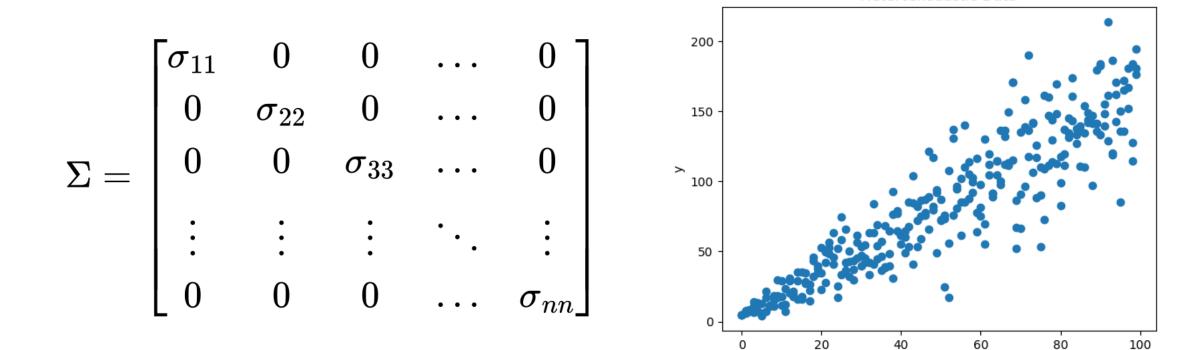
WLS variance-covariance examples

$$V[\boldsymbol{\varepsilon}] = E[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^T] = \sigma^2 \boldsymbol{\Sigma}$$

$$\Sigma = egin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} & \dots & \sigma_{1n} \ \sigma_{21} & \sigma_{22} & \sigma_{23} & \dots & \sigma_{2n} \ \sigma_{31} & \sigma_{32} & \sigma_{33} & \dots & \sigma_{3n} \ dots & dots &$$

WLS variance-covariance examples

$$V[\boldsymbol{\varepsilon}] = E[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^T] = \sigma^2 \boldsymbol{\Sigma}$$



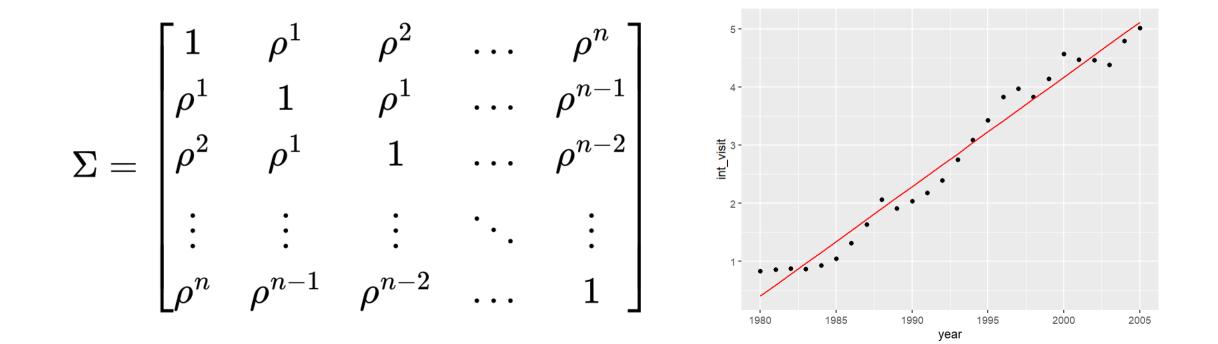
Title

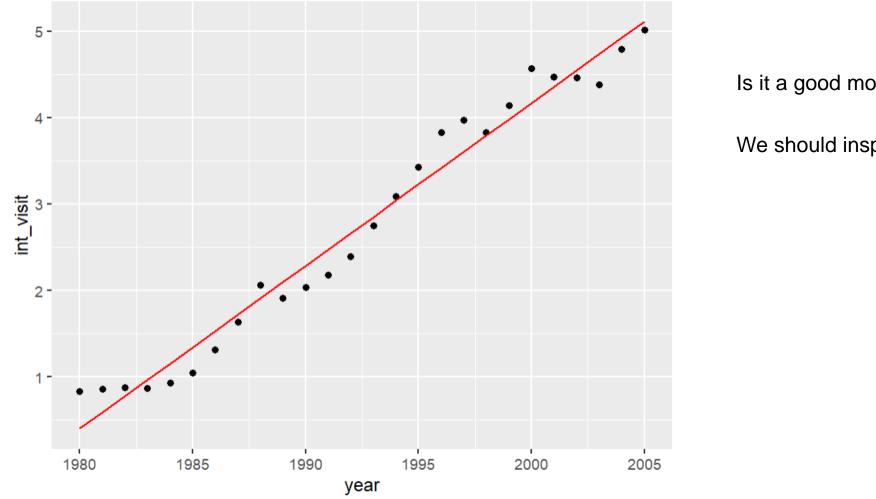
Heteroskedastic Data

х

WLS variance-covariance examples

$$V[\boldsymbol{\varepsilon}] = E[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^T] = \sigma^2 \boldsymbol{\Sigma}$$

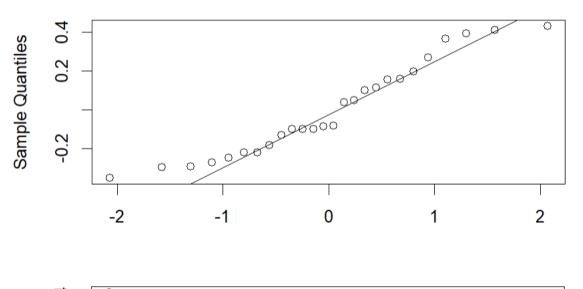




Is it a good model?

We should inspect the residuals!

Normal Q-Q Plot

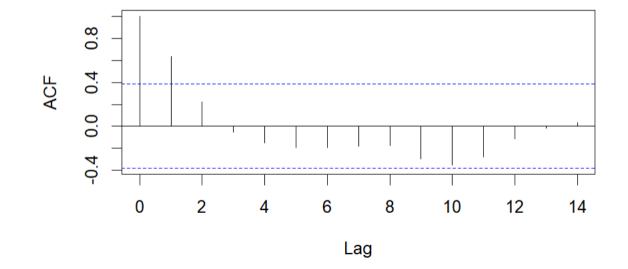


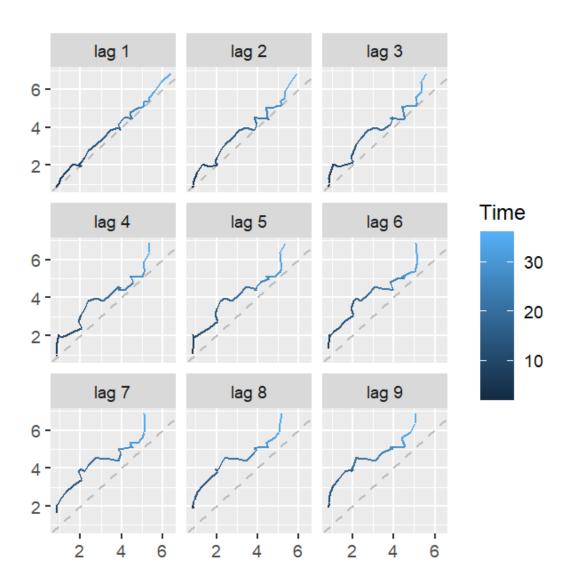
0.4 0 ° 。 $^{\circ}$ 0 0.2 0 0 0 e_ols 0 0 0 0 $^{\circ}$ $^{\circ}$ 0 0 0 0 -0.2 $^{\circ}$ 0 0 000 0 0 0 5 10 15 20 25

Are the residuals normally distributed?

Is there a pattern in the residuals?

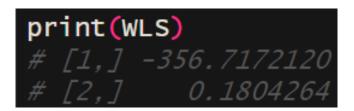
We can also inspect the autocorrelations of the resilduals



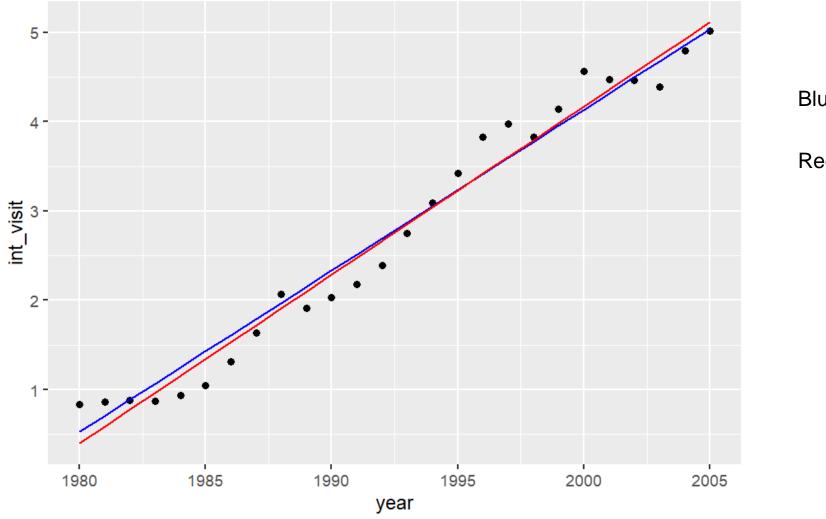


<pre>> print(SIGMA[1:5,1:5])</pre>							
	[,1]	[,2]	[,3]	[,4]	[,5]		
[1,]	1.0000	0.700	0.49	0.343	0.2401		
[2,]	0.7000	1.000	0.70	0.490	0.3430		
[3,]	0.4900	0.700	1.00	0.700	0.4900		
[4,]	0.3430	0.490	0.70	1.000	0.7000		
[5,]	0.2401	0.343	0.49	0.700	1.0000		

WLS <- solve(t(X)%*%solve(SIGMA)%*%X)%*%(t(X)%*%solve(SIGMA)%*%y)



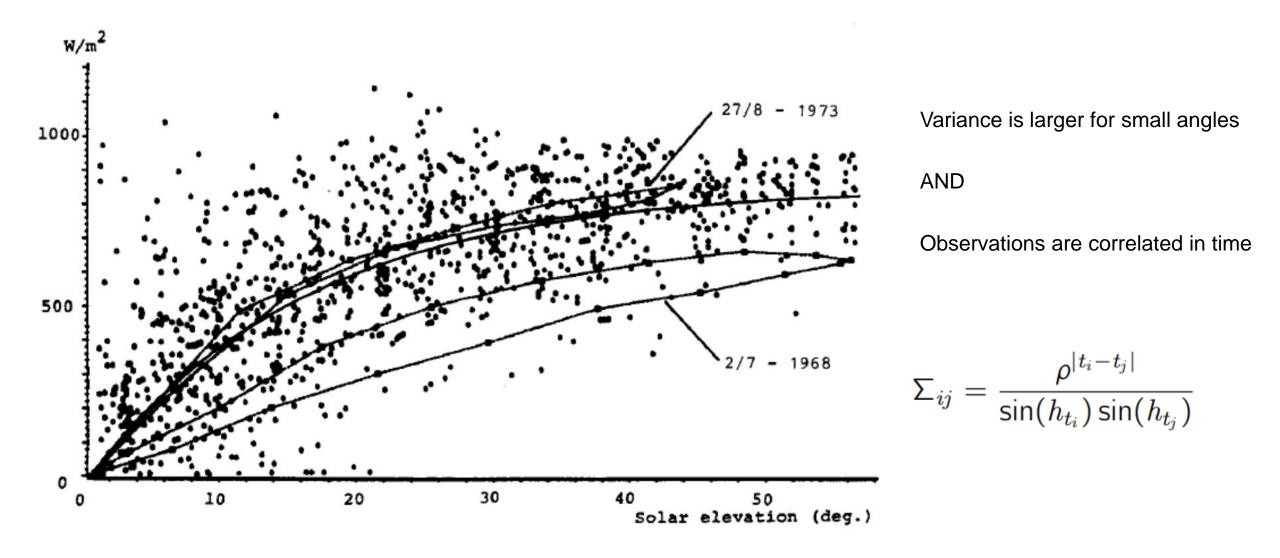
The estimated parameters are slightly different



Blue is WLS

Red is OLS from before

Example from the book



- Combine weights (WLS) with trend models to make "local trend models"

- "Exponential smoothing"