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Outline of the lecture

W

» Regression based methods, 15t part:
* Ordinary Least Squares (OLS)
* Predictions = forecast
* Global Trend Model
» Weighted Least Squares (WLS)
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General form of the regression model

Vi =f(X4¢, t,0)+ ¢




General form of the regression model

W

Vi =f(X4¢, t,0)+ ¢

Y; is the output we aim to model
X ; indicates the p independent variables X ; = (Xy4, -+, Xp¢) 7
t is the time index

0 indicates m unknown parameters (81, -+ ,60,,)7

£, is a sequence of random variables with mean zero, variance 07, and Cov(ey,, £,] = 07X,
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General form of the regression model

W

Vi =f(X4¢, t,0)+ ¢

Y; is the output we aim to model
X ; indicates the p independent variables X ; = (Xy4, -+, Xp¢) 7
t is the time index

0 indicates m unknown parameters (81, -+ ,60,,)7

£, is a sequence of random variables with mean zero, variance 07, and Cov(ey,, £,] = 07X,

For now we restrict the discussion to the case where X, is non-random and thus we write x;
instead of X ;.




Outline of the lecture
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» Regression based methods, 15t part:
* Ordinary Least Squares (OLS)




= Ordinary Least Squares (OLS)

Least Squares Linear Regression with Errors (Residuals)

7 @ Data Points %
Observations (data): —— Fitted Regression Line o
°
(y1.21), (2, 22), -, (Yn, T1) ]
15
OLS estimates (of the parameters) are found by -
minimizing the sum of squared residuals:
n n 10
: 2 2
S0) = [y — f(z:0)]° =) _€7(6)
t=1 t=1
5 -
(sometimes also called "RSS”) : ] T T T N
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OLS - model assumptions

Errors must be assumed to all have the same variance
and be mutually uncorrelated
Least Squares Linear Regression with Errors tResiduals}

25 1 ;
Errors are "i.i.d” ¢ DataPoints %
—— Fitted Regression Line o , 'i
o
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OLS - model assumptions

Errors must be assumed to all have the same variance
and be mutually uncorrelated

Errors are ”i.i.d”

COV[Eti, Etj] = O'?sz
1 0 0 ... O]
0 1 0
0 0 1 0

Least Squares Linear Regression with Errors tResiduals}

25 1

20 +

15 1

10 +

@ Data Points %
—— Fitted Regression Line 'I' v, &
L
I
1) .
T "
® |
Il X h
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OLS —variance of model errors and of parameters

The variance of the model errors is estimated as:

. S(8)
n—p

where p is the number of estimated parameters.
The variance-covariance matrix of the estimates is approximately
62

V(6] = 252 [%5(9)]1

-~

0=0
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The General Linear Model (GLM)

Yt:$?9+€t
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The General Linear Model (GLM)

Yt:$?9+€t

Is this model a GLM?

Yi =00+ 012 + &4
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The General Linear Model (GLM)

Yt:$?9+€t

Is this model a GLM?
Yi =00+ 012 + &4

Yes, what about this one?

Y, =00+ 612 + 0222 + €,
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The General Linear Model (GLM)

Yt:$?9+€t

Is this model a GLM?
Yi =00+ 012 + &4

Yes, what about this one?
Y, =00+ 612 + 0222 + €,

Also yes, since it can be written as
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The General Linear Model (GLM)

Yt:$?9+€t

Is this model a GLM?
Yi =00+ 012 + &4

Yes, what about this one?
Y, =00+ 612 + 0222 + €,

Also yes, since it can be written as
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= Matrix notation

oo

For all observations the model equations are written as:

RAAENER (€1 |
=1 :|0+]|:| or Y==x0+¢
Yol lmal  Len
"Design

Matrix”
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Matrix notation

W

For all observations the model equations are written as:

RAENEE (€
—| |0+ |:| or Y=zb+¢
T
- Yn_ _3’3 n J _8?’1_
"Design
Matrix”
& | — Line that minimize RSS >
Ex: Simple linear regression:
Y =Bo+pixite, i={1...,n} < -
- |\ ¥
_ _ - _ B
Yl 1 X1 €1 5
. . ﬁO . : Bo: Estimated intercept
— |: . + . o — B1: Estimated slope
ﬁl ° : e;: Residual

YH 1 xn 8?’1 I I I \ I \ | I

-2 -1 0 1 2 3 = 5
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OLS estimates for the general linear model

-~

We minimise S(0) = eTe = (Y — x0)" (Y — x0), by solving 6%S(EJ) = 0.

S0)= (Y —x0) (Y — x0)
V()S(Q) — —QCET(Y — :EQ) =0

xlx0 =z21Y

The solution is |0 = (zTz) 'zTY
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OLS estimates for the general linear model

Point estimate of parameters:

0= (zTz) zTY

Variance of parameters: Or approximately:

Varfo] = E[{0 - 6){8 — )7 = (") Vg - 25" | S550)] _1

-

6=0

Estimate of the variance of residuals:

0? =¢€'¢e/(n — p)
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Properties of the OLS-estimator of a GLM

> It is a linear function of the observations Y (and Y is thus a linear function of the
observations)

> It is unbiased, i.e. F[0] =0
> VIl =E[(@-0)(6-8)T| =o*(zTa)!

~

» 0 is BLUE (Best Linear Unbiased Estimator), which means that it has the smallest variance
among all estimators which are a linear function of the observations.
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Example in R

™
o *
*
* @
PR
.
L P .
D »
0 o,
'5|4 » * »
—
[
- ™
»
»
.
. »*
2- .
»
™
»
P
1980 1990 2000 2010

year




= ExampleinR

(]
=
Ll

n T 1.7

[:l] p— o

.8298943 9 o (:B :B) L Y
.8595109
.8766892
.8667072
.9320520
.0482636
.3111932
6375623
.0641074
9126828
.0354457
1772113
.3896834 Parameter estimates
. 7505921

.0906664

.4266403

.8306491

.9719086

.8316004

.1431010

.5665510

. 4754100

. 4627960

.3848290

. 7968610

.0150490

OLS solve(t(X

theta_0 oLS |1
theta_1 OLS|?2

RRRRPRRRRPRRRERPRRRERRRPRRERRRPRRRRERRRRRR
NHEARPAPAPRBRWWWWWNNNNRNRREREROOOOO




= ExampleinR

(]
=
Ll

A

.8298943 9 o (:B L L Y
.8595109
.8766892
.8667072
.9320520
.0482636
.3111932
6375623
.0641074
9126828
.0354457
1772113
.3896834 Parameter estimates
. 7505921

.0906664

.4266403

9719086 Y = z6
ST yhat_ols X%*%0LS

.1431010
.5665510 _
.4754100 Predicted values
. 4627960
.3848290
.7968610
.0150490

OLS solve(t(X

theta_0 oLS |1
theta_1 OLS|?2

RRRRPRRRRPRRRERPRRRERRRPRRERRRPRRRRERRRRRR
NHEARPAPAPRBRWWWWWNNNNRNRREREROOOOO




=
—]
—

W

Example in R

1980 1985 1990 1995 2000 2005
year
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Example in R

e_ols y - yvhat_ols

RSS_ols t(e_ols e_ols

sigma2_ols as.numeric(RSS_ols/(n nparams o2 = ETE/(n — p)

o~

v_ols sigma2_ols * solve(t(X Var|0] = E FQ — 9)/(9 — O)T] = o?(xlx) !

[,1] [,2]
[1,] 165.6609970 -8.314110e-02
[2,] -0.0831411 4.172703e-05

se_theta_0 sqrt(diag(v_ols ' Now we have estimated the parameters
se_theta_1 sqrt(diag(v_ols AND their standard error




Outline of the lecture

W

» Regression based methods, 15t part:
* Ordinary Least Squares (OLS)
* Predictions = forecast
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Prediction in the general linear model

If the expected value of the squared prediction error is to be minimized, then

the expected mean E[Y|X = z] is the optimal predictor.

Yt:$?9+gt
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Prediction in the general linear model

If the expected value of the squared prediction error is to be minimized, then

the expected mean E[Y|X = z] is the optimal predictor.

Yt:$?9+gt

Known parameters:

?t = Eg[Yt|Xt = iL't] = :]3?9
Vol Vi — Y] = Veles] = o2
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Prediction in the general linear model

If the expected value of the squared prediction error is to be minimized, then

the expected mean E[Y|X = z] is the optimal predictor.

Yt:$?9+gt

Known parameters: R
Yt = Eg[Yt|Xt = iL't] = :]3?9

Vol Vi — Y] = Veles] = o2

Estimated parameters: R
Yt = Eé‘[Ytlxt — $t] = a:;FO

VelY: — Yil = Viles + 2 (0 - 0)] = 3°[1 + 2 (") ']
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Prediction in the general linear model, continued

Prediction interval for the predicted values:

Y, + tas2(n — p)ﬁ\/l +z!l(zTx) 1z,

Here ta/g(n — p) refers to a percentile in the t-distribution with n-p degrees of freedom.
If n-p is large, percentiles from the normal distribution can be used.

In time series analysis: Prediction of future values = "forecast”
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Example in R

5 -
Lets make predictions
(forecast) for the next
) 10 years
>
Zl
c
2 =

1980 1985 1990 1995 2000 2005
year




= ExampleinR

[,1] gagé /Yt:Eé\[YtIXt:IBt]:wTé\
5007 y_pred Xtest*%0LS
2008

2009 i .
2010 02U_+-ngafrw) lwt]

2011 vmatrix_pred sigma2_ols* (1+(Xtest%*%solve(t(X t
2012

2013
2014
2015 y_pred_lwr y_pred 1.96*sqrt(diag(vmatrix_pred

y_pred_upr y_pred 1.96*sqrt(diag(vmatrix_pred

RRRRERRRRRR
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Example in R

int_visit
I

1980 1990 2000 2010
year
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Example in R

int_visit
I

What do you think about the forecast?

1980 1990 2000 2010
year
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Example in R

6_
*
i
>|4 i
I=
Here’s the actual "test data”
2_
e & 0% "
1 9I80 1 9I90 2OICIO 20I‘l 0

year




Outline of the lecture

W

» Regression based methods, 15t part:
* Ordinary Least Squares (OLS)
* Predictions = forecast
* Global Trend Model
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Sneakpeak at “Trend Models”

Trend models are:

- Linear regression models

- The independent variables are functions of time

- The reference time is often the latest timepoint instead of the "origin’
- Notation is a bit different — the principle is the same

H

Yni; =f1()0+eny

Today we will only talk about global trend models
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Sneakpeak at “Trend Models”

Trend models are:

- Linear regression models

- The independent variables are functions of time

- The reference time is often the latest timepoint instead of the "origin”
- Notation is a bit different — the principle is the same

Yni; =f1()0+eny

N refers to the "latest” timepoint in the data — this is our reference timepoint (="now”)
If we put j=0, we get the estimate "now”

j=1,2,3,... refers to future timepoints

The data available to estimate the model is the data from j =0, -1, -2, -3, ...




)
q
c

o .
= Examplein R
Parameters:
Intercept (at "year 0”):
"EEE
Slope (per year):
3%4 0.19
5.

1980 1990 2000 2010
vear
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Trend model setting:

o -
= Examplein R
Parameters:
I t (at latest timepoint):
Parameters: 5nt1elrcep & 7l e Y
Intercept (at "year 0”):
6- pt (aty ) Slope (per timepoint):
-373 -
2 0.19
Slope (per year): L =
2 0.19 .
.._'|4- % 5

foko f650 3600 200 Notice the change in x-axis!
voay Number of obs. in training data = N = 26¢
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The linear trend model

W

» The general trend model:
Yy =F7 ()0 +enyy

» The linear trend model is obtained when: f(j) = ( j )

Yy (=N +1) €1
Yy fH(=N+2) €2

Yy o) en




= ExampleinR

[,1]

[,1]
.8298943
.8595109
.8766892
.8667072
.9320520
.0482636
.3111932
.6375623
. 0641074
.9126828
.0354457
1772113
. 3896834
. 7505921
. 0906664
.4266403
-8306491
. 9719086
.8316004
.1431010
.5665510
.4754100
.4627960
. 3848290
. 7968610
. 0150490

Vector of y-values

"Design-
stays the same

Matrix”
changes

RFRHRRRRRPRRRRPRERRRRERRRERRRPRRERRRERRERRRRR
PFRRERRPRREPREPRRERRPREREPRERRERRPRRERERRERRERREREPRBRRERRER
VAR PRRARRAAUWUWWWWNNNNRNRRROOO OO
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Trend model, OLS estimates

:ENBN+

£7(0)

§N = (331:"{;1]9]\()_139}{; YN = F%th

N —

Fy=zyzy = Zf( ~Nf 1 (=))

7=0

N-1
hy=zyY =) f(=5)Yn
7=0

(=N +1)]
f1(=N+2)

0N+

It is still an OLS regression model!

The notation is different
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Example in R

Parameters:

Intercept (at latest timepoint):

Estimating the parameters: ° 51

F_N TLX_N X_N Slope (per timepoint):

0.19

int_visit
D

theta_N solve(F_N L
print(theta_N °

-20 -10 0 10
X 26




Other trend models

W

Constant mean: Yy, = 600 + €N+

Linear trend: Yn4; =600 + 6017 + €n+;

Quadratic trend: YNy = 0o + 617 + 92% + En+j

k'th order polynomial trend: Y,; = 609 + 617 + 923; + -+ Gk% + EN+j
Harmonic model with the period p: Yny; = 09 4+ 61 sIn %’rj + 65 cos ij + ENy

vvyyvyyvyy
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W

» Prediction: R
Yniogn =F 1 (£)8n

» Variance of the prediction error:

V[Vnie— Yuign] =0 [L+ FT(OF A ()]

» 100(1 — )% prediction interval:

Ynign £ tasa(N — p)v/Ven (0)]

= Vi £ tap(N — )31+ F T (OF 3 £(2)

where 62 = eT€/(N — p) (p is the number of estimated parameters)
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Example in R

Predicting the future values
(here we predict forj=1,2,3,4,5,6,7,8,9,10)

sir=( ) 5, el

.
o~ o T ~ 25 = i E
Yniogn = F 7 (£)0n

y_pred_N t(f(1:10 theta_N G

-20 -10
X 26
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Example in R

Compute prediction intervals

Vi sen £ tag2(N = )3y/1+ £ T (O F 5 £(2) . B

int_visit
D
[ ]

e_N y yhat_N
RSS Tle_N e_N y
sigma_2 as.numeric(RSS/(n-nparams

y_pred_N_Tlwr y_pred_N 1.96"sqrt(sigma_2) “sqrt(l+diag(t(f(1:10

solve(F_N f(1:10
y_pred_N_upr y_pred_N 1.96"sqrt(sigma_2) “sqrt(l+diag(t(f(1:10

solve (F_N f(1:10
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Why do all this ??




= lterative updates

» Task:
» Going from estimates basedon t =1, ..., N,j.e. §N to
» estimates basedont =1, ..., N,N+1, ie Oyiq
» without redoing everything. . .
» Solution:
Fyiy1i = Fy+f(—N)f"(-N)
hyiyr = L'hy +f(0)Yng
Oni1 = Fﬁlﬂ h i1

Also iterative updates becomes smart, when we start doing local trend models (next week)




W

int visit

Update the model,

-20

-10

X 26

10

We get the next observation

We want to shift the x-axis to the latest
observation

And redo the regression line

And redo the forecast
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Updating the model

Fnii = Fy+f(=N)f"(-N)
hni1 = hN + f(0) YN
Onii = FyL hni

L defines the transition from f(j) to f(j + 1)

f(G+1)=Lf({)
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Linear trend model

Ynyj=00+01]+eny; L = G (1)) : f(0) = ((1))

Quadratic trend model

-2
: J
Ynyj =00+ 015+ 925 T EN+j

— = O
—_— O O
S~
~_
-
S
|
O O -
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= L matrix examples

k’th order polynomial trend

-2

YNy =00+ 015+ 92J— + -

2

e +9},% +5N+j
( 1 0
1 1
1/2 1

\1/k 1/(k — 1)
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Harmonic model with the period p

2N . 2m\
YN+ =60+ 6, &11(7) 7+ 62 C()S<?> J+ENt

1 0 0 1
L=10 (05(2—)) sin “[—”) £0)= [0
0 —5111(2%) COS 2—”) 1
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Example in R

matrix(c(1.,0., 1.,1.),
byrow=TRUE, nrow

— - Fyi = Fy+f(~N)f"(~N)
h_N_27 ' f(0)*ynew hyi, = L_th + f(O) YN+1
theta_N_27 solve(F_N_27 h_N_27 ~ 1

Oni1 = Fy,. hyp

Slight change from before:

[,1]
5.2702522 5.11
j 0.1867399 0.19




=
—]
—

W

Example in R

8_

int_visit
I

-20 -10 0 10
x_27
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Example in R




Outline of the lecture

W

» Regression based methods, 15t part:
* Ordinary Least Squares (OLS)
* Predictions = forecast
* Global Trend Model
* Weighted Least Squares (WLS)




= Weighted Least Squares (WLS) estimates
Least Squares Linear Regression with Errors lResiduals)
251 :
Recall: OLS, minimizing the sum of squared residuals: il zftt:dpggfession Line

204

S(8) = Z[yt f(z::0)]? Zet(e)

15 4

Where we assumed the residuals have the same variance and are
mutually uncorrelated.

10 4
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Weighted Least Squares (WLS) estimates

Recall: OLS, minimizing the sum of squared residuals:

SO)=> [ —f(z;0)°> =D €;(6)

Heteroskedastic Data

Where we assumed the residuals have the same variance and are 200 - .
mutually uncorrelated. ¢ F M
. |
L, B
o N @ .
150 - . ° ¥ o."
% : .0."" .z y .-..
L)
~ 100 1 . ..'{..‘ ‘.. = -o )
@
L ‘#zf ™ ®

T T T T T T
0 20 40 60 80 100
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Weighted Least Squares (WLS) estimates

Recall: OLS, minimizing the sum of squared residuals:

S(e)—Z[yt f(z::0)]? Zet(e)

Heteroskedastic Data

]
Where we assumed the residuals have the same variance and are 200 - .
mutually uncorrelated. ° *° 4
R
o N @ .
150 ® &::.
o]
| | | 37 o 34 TS,
In WLS we assume the residuals can have different variances and S e, e
be mutually correlated: 100 - ° ﬁ"i * e
y o St Fe, ',
® P ®
_ T — ~2 ®
Vie] = Flee’]| = 0°X . ] ',-'.g.‘.p"g P e o
de E ." ’ ol
We minimize the weighted sum of squared residuals: | ¢ ¢

(Y . :BG)TZ_]'( Y . mg) 0 20 40 ) 60 80 100




=)
=
—

W

Weighted Least Squares (WLS) estimates

Heteroskedastic Data

200 A °

How would weighting
residuals make sense for
this data? 150 -

100 A

50 A

0 20 40 60 80 100
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Weighted Least Squares (WLS) estimates

200 A
How would weighting
residuals make sense for
this data? 150 A

Large variance

|

Lower "weight”

50 A

Heteroskedastic Data

100 A

20

80

100
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WLS estimates for the general linear model

For all observations the model equations are written as:
(Y, E (€1
= | |0+ ]: or Y =x0+c¢

Y, :IZ,Z En

We want to minimize (Y — z8)TE (Y — z0)

The solution is
0=z’ ) el 'Y

(if 27X ' is invertible)

5 1

6% = (Y —28) T (Y —28) VB =E[@-0)@-6)"]=(2"E 'z) 07
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Maximum likelihood estimates

W

» Assume that the observations are Gaussian:

Y ~N,(z0, 0*%)

» and that X is known.
» The ML-estimator is (here) the same as the WLS-estimator:

0= (T 'z) 27T 'y

» The ML-estimator for o2 is

52 = l(Y —z0)TE (Y - z0)

n

» OLS and WLS estimates can be interpreted as? assumptions of Gaussianity.
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WLS variance-covariance examples

Vel = Elee!] = o*X

g11 012 013 T1n
021 022 023 T 2n
Y |031 032 033 T 3n
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WLS variance-covariance examples

Vel = Elee!] = o*X

Heteroskedastic Data

T
100

™~ = h___.._.l._
I 1
o O O m
L
o O & =)
o
- N =) o
B
~ o O -
B

80

60

40

20
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WLS variance-covariance examples

Vel = Elee!] = o*X

B 1 pl p2 pn B} 5
pl 1 pl pn—l 4
S P2 pl 1 pn—2 :.
_pn pn—l p'n,—2 1 ) -

1980 1985 1990 1995 2000 2005
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Example in R

5 -
Is it a good model?
4 -
We should inspect the residuals!
@ 3
=
ol
£
2 -
-1 -
1980 1985 1990 1995 2000 2005

year




oy

Sample Quantiles

e ols

02 04

-0.2

02 04

-0.2

Example in R

Normal Q-Q Plot

Are the residuals normally distributed?

Is there a pattern in the residuals?
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Example in R

We can also inspect the autocorrelations of the resilduals

@
o
<
o
o |
o
<
<

lag 1 lag 2 lag 3
5 -
4 -
2 -
lag 4 lag 5 lag 6 Time
6 - 30
4-
20
2 -
’ 10
lag 7 lag 8 lag 9




= ExampleinR

[,11 [.2]1 [,31 [,4]
1.0000 0.700 0.49 0.343
0.7000 1.000 0.70 0.490
0.4900 0.700 1.00 0.700

0.3430 0.490 0.70 1.000
0.2401 0.343 0.49 0.700

WLS solve(t(X solve (SIGMA solve (SIGMA

print (WLS
The estimated parameters are slightly different




=
—]
—

o -
= Examplein R
5_
Blue is WLS
4 -
Red is OLS from before
@ 3-
2|
c
2_

1980 1985 1990 1995 2000 2005
year
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= Example from the book

W/m2
. ]
{666 . . g <LB = 1970 Variance is larger for small angles
o . o
< ® s a ..
. ® . e, een, oy AND
E - : ° ‘ .
4 ¢ % ds . .
. "J S epe o Observations are correlated in time
L [ ]
- & & I .... :.
500 1 % o ?'a
.. ™
- .. . LN ] a
] wg 2/7 - 1968 p|t.¢-—tj|
‘ “‘ , ' Z,L j—
: J - :
] o o sm(hti)sm(htj)
a
- ®
% - 2 '} .
o - - e 8 =
0 10 20 30 40 50

Solar elevation (deg.)
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Next time

W

- Combine weights (WLS) with trend models to make "local trend models”

- "Exponential smoothing”
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