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Outline of the lecture
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• Regression based methods, 2nd part:

• From Global models to Local models

• WLS 

• Local Trend Model

• Exponential smoothing in general
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Model from last week:

The ”training data” consists of 26 

observations (1980 to 2005)

We predict values for the next 10 

observations (2006 to 2015)
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• Regression based methods, 2nd part:

• From Global models to Local models

• WLS 

• Local Trend Model

• Exponential smoothing in general
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What if the model had only been 

based on the 10 most recent 

observations?
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What if the model had only been 

based on the 10 most recent 

observations?

- Parameters (intercept and slope) are 

different and hence predicted values 

are different

- Prediction intervals are wider

(s.e. on parameter estimates are also 

larger). 

This is because n (number of 

observations) is smaller. 

Recall:
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From Global to Local models
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What if the model had only been 

based on the 5 most recent 

observations?
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What if the model had only been 

based on the 5 most recent 

observations?

 

- How many observations do we need?

- What is optimal?
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What if the model had only been 

based on the 2 most recent 

observations?

He we use only two oberservations 

to estimate two parameters

The variance estimate ”explodes”

N = number of observations in data

p = number of parameters estimated
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From Global to Local models
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Questions:

How do we choose how many observations to use?

Is it fair to make a sharp ”cut-off” like that? 

 - could we make a more soft cut-off?
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We could also use weights and make most recent obs. have highest weight!

W
e
ig

h
t



DTUDate Title

Outline of the lecture

12

• Regression based methods, 2nd part:

• From Global models to Local models

• WLS

• Local Trend Model

• Exponential smoothing in general
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In WLS we assume the residuals can have different variances and 

be mutually correlated:

We minimize the weighted sum of squared residuals: 
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In WLS we assume the residuals can have different variances and 

be mutually correlated:

We minimize the weighted sum of squared residuals: 

Solution:
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In WLS we assume the residuals can have different variances and 

be mutually correlated:

We minimize the weighted sum of squared residuals: 

Solution:

Remember that the diagonal elements have to do with the 

variances of the individual observations

And the off-diagonal elements have to do with covariance 

between two observations



DTUDate Title
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Today we consider the case where only variances are different 

(no covariances = off-diagonal elements are zero)
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Recall: Large variance = Low weight

(Weighted sum of squares, uses          )
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Now we want the variance-covariance 

matrix to represent weights like this:
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Blue is WLS

Red is OLS from last week

The blue line fits the late observations 

better than the early observations – 

just as we wanted
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Example in R
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Blue is WLS

Red is OLS from last week

The blue line fits the late observations 

better than the early observations – 

just as we wanted

What about predictions and 

prediction intervals?!
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Predictions with WLS
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What should we assume about the variance of 

future observations?
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Predictions with WLS
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What should we assume about the variance of 

future observations?

Also we have seen earlier today that using less 

data points leads to larger uncertainties 

So is it fair to use n = N (n = 26 in this example), 

when the observations are weighted? 
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What should we assume about the variance of 

future observations?

Also we have seen earlier today that using less 

data points leads to larger uncertainties 

So is it fair to use n = N (n = 26 in this example), 

when the observations are weighted? 

We will get back to this issue later
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• Regression based methods, 2nd part:

• From Global models to Local models

• WLS 

• Local Trend Model

• Exponential smoothing in general
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The General Linear Model         The Trend Model:
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Trend models are:

- Linear regression models

- The independent variables are functions of time

- The reference time is often the latest timepoint instead of the ”origin”

- Notation is a bit different – the principle is the same

N refers to the ”latest” timepoint in the data – this is our reference timepoint (=”now”)

If we put j=0, we get the estimate ”now”

j = 1,2,3,… refers to future timepoints

The data available to estimate the model is the data from j = 0, -1, -2, -3, …
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Global Trend model, parameter estimates
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OLS solution to the GLOBAL trend model:



DTUDate Title

Global Trend model, parameter estimates
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OLS solution to the GLOBAL trend model:

The solution is found by minimizing the 

sum of squared residuals (”Least Squares”)
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Global Trend model, parameter estimates
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OLS solution to the GLOBAL trend model:

The solution is found by minimizing the 

sum of squared residuals (”Least Squares”)

We can change this to minimizing the

weighted sum of squared residuals (WLS) 

making a Local Trend model
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Local Trend model with WLS

33



DTUDate Title

Local Trend model, parameter estimates
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WLS solution to the LOCAL trend model:
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1) Calculate F_1 and h_1

2) Use update equations to calculate new 

values of F and h 

3) Use F and h to calculate parameter 

estimates

4) Maybe disregard first few parameter 

estimates as transient
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Local Trend model, iterative updates
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1) Calculate F_1 and h_1

2) Use update equations to calculate new 

values of F and h 

3) Use F and h to calculate parameter 

estimates

4) Maybe disregard first few parameter 

estimates as transient

How many observation do you need to 

estimate p parameters?
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Local Trend model, iterative updates
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1) Calculate F_1 and h_1

2) Use update equations to calculate new 

values of F and h 

3) Use F and h to calculate parameter 

estimates

4) Maybe disregard first few parameter 

estimates as transient

How many observation do you need to 

estimate p parameters?

- F_N need to be invertible in order to 

  estimate parameters

- start by updating F and h a few times 

- then estimate parameters once you have  

  enough observations
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Too soon to estimate parameters!

Calculate F_1 and h_1

Using only one observation: y[1]
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R example
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First update

Now we have F_2 and h_2

This time estimation of parameters works

Intercept at N = 2

Slope calculated from only two observations

(and weighted by lambda)
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R example
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Blue line is local 

model based on only 

two observations

Red line is the original 

OLS based on all 26 

observations
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R example
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R example
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Remember that the 

blue line is WLS, such 

that latest timepoints 

have higher weight. 

Here we used 

lambda = 0.6
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Imagine new observations are available as time passes

We want to make best prediction based on the available data at every timepoint

We also want to evaluate the model performance for different values of lambda
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At every value of N in our iteration we could forecast future values using 

the most recent values of parameter estimates.

Recall ”l-step predictions” from last time?

Forecasting only one time-step ahead is called one-step predictions (l = 1)
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R example – onestep prediction 

52



DTUDate Title

R example – onestep prediction 
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R example – onestep prediction 
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R example – onestep prediction 
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R example – onestep prediction 
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R example – onestep prediction 
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Each onestep 

prediction is predicted 

using a new (updated) 

set of parameters
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R example – onestep prediction 
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Plot of all the onestep 

predictions
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R example – onestep prediction 
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Plot of all the onestep 

predictions

We can try with 

different values of 

lambda
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R example – onestep prediction 
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Blue: lambda = 0.6

Green: lambda = 0.9



DTUDate Title

R example – onestep prediction 
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Blue: lambda = 0.6

Green: lambda = 0.9

Pink: lambda = 0.3
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R example – onestep prediction 
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Blue: lambda = 0.6

Green: lambda = 0.9

Pink: lambda = 0.3

What do you think is 

the general effect of 

increasing/decreasing 

lambda?
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Larger     - longer ”memory”

    = 1 equals OLS
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For each onestep 

prediction we could 

calculate the 

prediction error once 

the next observation 

(y-value) is available

And then we could 

calculate which model 

gives results that are 

the closest to the 

actual observatione 

(smallest prediction 

errors)

Choice of
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For each onestep 

prediction we could 

calculate the 

prediction error once 

the next observation 

(y-value) is available

And then we could 

calculate which model 

gives results that are 

the closest to the 

actual observatione 

(smallest prediction 

errors)

Choice of

But what if we wanted 

to predict further than 

one step?

Could we expect the 

same lambda to be 

optimal?
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For each onestep 

prediction we could 

calculate the 

prediction error once 

the next observation 

(y-value) is available

And then we could 

calculate which model 

gives results that are 

the closest to the 

actual observatione 

(smallest prediction 

errors)

Choice of

But what if we wanted 

to predict further than 

one step?

Could we expect the 

same lambda to be 

optimal?

And what about 

uncertainties 

(prediction intervals)?
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Recall from OLS 

smaller n = larger prediction intervals
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Estimating uncertainty in Local Linear Trend model
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Recall from OLS 

smaller n = larger prediction intervals

With WLS 
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Estimating uncertainty in Local Linear Trend model
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Recall from OLS 

smaller n = larger prediction intervals

With WLS 

Larger residuals

But is model really based on N observations?

If lambda is small some observations have 

close to zero weight 
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Define the total memory as the sum of all the weights:

T is a meassure of how many observations the 

estimation is essentially based upon

(In OLS the sum of weights = N)
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Estimating uncertainty in Local Linear Trend model (2)
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Define the total memory as the sum of all the weights:

T is a meassure of how many observations the 

estimation is essentially based upon

(In OLS the sum of weights = N)

Replace N with T, when estimating the variance: 

Notice we need T > p

(p = number of parameters)

The sum of weights must be larger than the number of 

parameters estimated. 



DTUDate Title

Estimating uncertainty in Local Linear Trend model (2)
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Define the total memory as the sum of all the weights:

T is a meassure of how many observations the 

estimation is essentially based upon

(In OLS the sum of weights = N)

Replace N with T, when estimating the variance: 

Notice we need T > p

(p = number of parameters)

The sum of weights must be larger than the number of 

parameters estimated. 

This requirement is a restriction on lambda

(lambda cannot be too small)



DTUDate Title

Estimating uncertainty in Local Linear Trend model (2)
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Define the total memory as the sum of all the weights:

T is a meassure of how many observations the 

estimation is essentially based upon

(In OLS the sum of weights = N)

Replace N with T, when estimating the variance: 

Notice we need T > p

(p = number of parameters)

The sum of weights must be larger than the number of 

parameters estimated. 

This requirement is a restriction on lambda

(lambda cannot be too small)

(note: the estimator is not in the book, but this is a 

”sneak peak” into chapter 11)
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• Regression based methods, 2nd part:

• From Global models to Local models

• WLS 

• Local Trend Model

• Exponential smoothing in general
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Smoothing

75

Let us consider a time series which 

does not have very strong trend

But there are large fluctuations!
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Smoothing

76

Here is an example of smoothing 

the data
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Smoothing
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Exponential Smoothing
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The weigths decay exponentially
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Exponential Smoothing
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Exponential Smoothing
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Recursive formulation
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Exponential Smoothing
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Recursive formulation
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Recursive formulation
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Simple Exponential Smoothing (SES)
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Almost as we did earlier 

today, but here we only have 

one parameter – 

the ”level” (intercept)
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Simple Exponential Smoothing (SES)
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Sum of squared 
l-step prediction errors

Almost as we did earlier 

today, but here we only have 

one parameter – 

the ”level” (intercept)
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Simple Exponential Smoothing (SES)
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Sum of squared 
l-step prediction errors

is used to find optimal lambda 

(or optimal alpha)

Almost as we did earlier 

today, but here we only have 

one parameter – 

the ”level” (intercept)
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Example – wind speed 76m a.g.l. at Risø
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Example – wind speed 76m a.g.l. at Risø



DTUDate Title 89

Example – wind speed 76m a.g.l. at Risø
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Optimal value of α = 1 - λ

• Minimize the sum of squared l-step prediction errors

• Optimal values depend on l = the ”prediction horizon”

• The same can be done for more complicated trend models
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Simple, double and triple exponential smoothing

• Simple Exponential smoothing

• The model includes a level / constant mean (intercept)

• All future predictions have the same value (constant)

• The predicted level is an exponentially weighted sum of past observations

• Holt’s Linear Trend model (= ”double exponential smoothing”)

• Includes both level (intercept at time = N) AND trend (slope) 

• Both the level and trend have individual smoothing parameters (individual lambda’s) (this is different

from the local model we have made – here we used same lambda for both parameters)

• In damped trend models a damping is included to the 

• Holt-Winters’ model (= ”triple exponential smoothing”)

• Includes level AND trend AND seasonal component (from final year of observations)

• 3 individual smoothing parameters

• ”ETS models” in general = Error-Trend-Season

• Both additive and multiplicative forms
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Simple, double and triple exponential smoothing

• Simple Exponential smoothing

• The model includes a level / constant mean (intercept)

• All future predictions have the same value (constant)

• The predicted level is an exponentially weighted sum of past observations

• Holt’s Linear Trend model (= ”double exponential smoothing”)

• Includes both level (intercept at time = N) AND trend (slope) 

• Both the level and trend have individual smoothing parameters (individual lambda’s) (this is different

from the local model we have made – here we used same lambda for both parameters)

• In damped trend models a damping is included to the 

• Holt-Winters’ model (= ”triple exponential smoothing”)

• Includes level AND trend AND seasonal component (from final year of observations)

• 3 individual smoothing parameters

• ”ETS models” in general = Error-Trend-Season

• Both additive and multiplicative forms
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Simple, double and triple exponential smoothing

• Simple Exponential smoothing

• The model includes a level / constant mean (intercept)

• All future predictions have the same value (constant)

• The predicted level is an exponentially weighted sum of past observations

• Holt’s Linear Trend model (= ”double exponential smoothing”)

• Includes both level (intercept at time = N) AND trend (slope) 

• Both the level and trend have individual smoothing parameters (individual lambda’s) (this is different

from the local model we have made – here we used same lambda for both parameters)

• In damped trend models a damping is included to the 

• Holt-Winters’ model (= ”triple exponential smoothing”)

• Includes level AND trend AND seasonal component (from final year of observations)

• 3 individual smoothing parameters

• ”ETS models” in general = Error-Trend-Season

• Both additive and multiplicative forms
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Simple, double and triple exponential smoothing

• Simple Exponential smoothing

• The model includes a level / constant mean (intercept)

• All future predictions have the same value (constant)

• The predicted level is an exponentially weighted sum of past observations

• Holt’s Linear Trend model (= ”double exponential smoothing”)

• Includes both level (intercept at time = N) AND trend (slope) 

• Both the level and trend have individual smoothing parameters (individual lambda’s) (this is different

from the local model we have made – here we used same lambda for both parameters)

• In damped trend models a damping is included to the 

• Holt-Winters’ model (= ”triple exponential smoothing”)

• Includes level AND trend AND seasonal component (from final year of observations)

• 3 individual smoothing parameters

• ”ETS models” in general = Error-Trend-Season

• Both additive and multiplicative forms



DTUDate Title

Next time
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- Stochastic Processes (and ARIMA models) w. Peder ☺
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