Time Series Analysis

Week 4 - Introduction to Stochastic Processes, Operators and Linear Systems

Peder Bacher

Department of Applied Mathematics and Computer Science Technical University of Denmark

March 21, 2024

Week 4: Outline of the lecture

- ▶ Operators; the backward shift operator; sec. 4.5.
- ▶ Stochastic processes in general: Sec 5.1, 5.2, 5.3 [except 5.3.2].

Operators; The backwards shift operator B

- An operator A is (here) a function of a time series $\{x_t\}$ (or a stochastic process $\{X_t\}$).
- ▶ Application of an operator on a time series $\{x_t\}$ yields a new time series $\{Ax_t\}$. Likewise of a stochastic process $\{AX_t\}$.

Operators; The backwards shift operator B

- An operator A is (here) a function of a time series $\{x_t\}$ (or a stochastic process $\{X_t\}$).
- Application of an operator on a time series $\{x_t\}$ yields a new time series $\{Ax_t\}$. Likewise of a stochastic process $\{AX_t\}$.
- ▶ Most important operator for us: The backwards shift operator $B : Bx_t = x_{t-1}$. Notice $B^j x_t = x_{t-j}.$
- \blacktriangleright All other operators we shall consider in this lecture may be expressed in terms of B.

Question

What is j ?

Question

What is j ?

The forward shift F

The forward shift operator

$$
\blacktriangleright \ \ Fx_t = x_{t+1}; \ F^j x_t = x_{t+j} ;
$$

The forward shift F

The forward shift operator

- ▶ $Fx_t = x_{t+1}$; $F^j x_t = x_{t+j}$; How can F be expressed in terms of B? $(Bx_t = x_{t-1})$
- \blacktriangleright Combining a forward and backward shift yields the identity operator; $BFx_t = Bx_{t+1} = x_t$, ie. F and B are each others inverse: $B^{-1} = F$ and $F^{-1} = B$.

The difference operator ∇

The difference operator

 $\blacktriangleright \nabla x_t = x_t - x_{t-1}$

▶ How can ∇ be expressed with B? A: $\nabla = 1 - B$ or B: $\nabla = 1 + B^{-1}$

The difference operator ∇

The difference operator

 $\blacktriangleright \nabla x_t = x_t - x_{t-1}$

▶ How can ∇ be expressed with B? A: $\nabla = 1 - B$ or B: $\nabla = 1 + B^{-1}$

 $= (1 - B)x_t.$

▶ Thus: $\nabla = 1 - B$.

The summation S

$$
Sx_t = x_t + x_{t-1} + x_{t-2} + \dots
$$

= $x_t + Bx_t + B^2x_t \dots$
= $(1 + B + B^2 + \dots)x_t$

The summation S

$$
Sx_t = x_t + x_{t-1} + x_{t-2} + \dots
$$

= $x_t + Bx_t + B^2x_t \dots$
= $(1 + B + B^2 + \dots)x_t$

Summation, then difference (using
$$
Sx_t = x_t + Sx_{t-1}
$$

$$
\nabla Sx_t = Sx_t - Sx_{t-1} = x_t + Sx_{t-1} - Sx_{t-1} = x_t
$$

The summation S

$$
Sx_t = x_t + x_{t-1} + x_{t-2} + \dots
$$

= $x_t + Bx_t + B^2x_t \dots$
= $(1 + B + B^2 + \dots)x_t$

Summation, then difference (using
$$
Sx_t = x_t + Sx_{t-1}
$$

$$
\nabla Sx_t = Sx_t - Sx_{t-1} = x_t + Sx_{t-1} - Sx_{t-1} = x_t
$$

▶ Difference, then summation

$$
S\nabla x_t = (1 + B + B^2 \dots)x_t - (1 + B + B^2 \dots)x_{t-1}
$$

= $(1 + B + B^2 \dots)x_t - (B + B^2 \dots)x_t = x_t$

▶ So ∇ and S are each others inverse:

$$
\nabla^{-1} = \frac{1}{1 - B} = 1 + B + B^2 + \dots = S
$$

In R:

 $x \le -1:10$ x $diff(x)$ $cumsum(x)$ # Not so nice in the ends! $cumsum(diff(x))$ diff(cumsum(x)) # Put a zero in beginning to fix it $cumsum(diff(c(0,x)))$ $diff(cumsum(c(0,x)))$

Shift operator is simply the most important:

```
lagvec \leq function(x, \text{lag}){
    if (\text{lag} > 0) {
        ## Lag x, i.e. delay x lag steps
        return(c(rep(M, lag), x[1:(length(x) - lag)]))}else if(lag < 0) {
        ## Lag x, i.e. delay x lag steps
        return(c(x[(abs(lag) + 1):length(x)], rep(MA, abs(lag))))}else{
        ## lag = 0, return x
        return(x)}
}
```
Lag to a data frame:

```
lagdf \leftarrow function(x, lag) {
 # Lag x, i.e. delay x lag steps
 if (\text{lag} > 0) {
   x[(\text{lag+1}):nrow(x), ] \leftarrow x[1:(nrow(x)-\text{lag}), ]x[1:lag, ] \leftarrow NA}else if(lag < 0) {
   # Lag x "ahead in time"
   x[1:(nrow(x)-abs(lag)), ] \leftarrow x[(abs(lag)+1):nrow(x), ]x[(nrow(x)-abs(lag)+1):nrow(x), ] \leftarrow NA}
 return(x)
\} 10 / 1
```
Properties of B , F , ∇ and S

 \blacktriangleright The operators are all linear, ie.

$$
H[ax_t + by_t] = aH[x_t] + bH[y_t]
$$

Properties of B, F, ∇ and S

 \blacktriangleright The operators are all linear, ie.

$$
H[ax_t + by_t] = aH[x_t] + bH[y_t]
$$

 \blacktriangleright The operators may be combined into new operators: The power series

$$
a(z) = \sum_{i=0}^{\infty} a_i z^i
$$

defines a new operator from an operator H by linear combinations:

$$
a(H) = \sum_{i=0}^{\infty} a_i H^i
$$

Examples of combined operators

 $\blacktriangleright \nabla^{-1}$:

$$
\frac{1}{1-z} = \sum_{i=0}^{\infty} z^i \quad \text{ so } \quad \nabla^{-1} = \frac{1}{1-B} = \sum_{i=0}^{\infty} B^i = S
$$

Examples of combined operators

 $\blacktriangleright \nabla^{-1}$:

$$
\frac{1}{1-z}=\sum_{i=0}^\infty z^i\quad \text{ so }\ \nabla^{-1}=\frac{1}{1-B}=\sum_{i=0}^\infty B^i=S
$$

 \triangleright Operator polynomial of order q:

$$
\theta(z) = \sum_{i=0}^{q} \theta_i z^i
$$

ie. $\theta_i = 0$ for $i > q$.

$$
\theta(B) = (1 + \theta_1 B + \dots + \theta_q B^q)
$$

where θ_0 is chosen to be 1

5.2 Stochastic processes and their moments

Stochastic Processes – in general

- **Function:** $X(t, \omega)$
- ▶ Time: $t \in T$
- \blacktriangleright Realization: $ω ∈ Ω$
- \blacktriangleright Index set: T
- ▶ Sample Space: Ω
- \blacktriangleright $X(\cdot, \cdot)$ is a stochastic process
- \blacktriangleright $X(t, \cdot)$ is a random variable

5.2 Stochastic processes and their moments

Stochastic Processes – in general

- **Function:** $X(t, \omega)$
- ▶ Time: $t \in T$
- \blacktriangleright Realization: $ω ∈ Ω$
- \blacktriangleright Index set: T
- \blacktriangleright Sample Space: $Ω$
- \blacktriangleright $X(\cdot, \cdot)$ is a stochastic process
- \blacktriangleright $X(t, \cdot)$ is a random variable
- $\blacktriangleright X(\cdot, \omega)$ is a time series (i.e. *one* realization). This is what we often denote $\{x_t\}$.
- \blacktriangleright $X(t, \omega)$ is an observation. This is what we often denote x_t .

Stochastic Processes – in general

- **Function:** $X(t, \omega)$
- ▶ Time: $t \in T$
- \blacktriangleright Realization: $\omega \in \Omega$
- \blacktriangleright Index set: T
- \blacktriangleright Sample Space: $Ω$
- \blacktriangleright $X(\cdot, \cdot)$ is a stochastic process
- \blacktriangleright $X(t, \cdot)$ is a random variable
- \blacktriangleright $X(\cdot, \omega)$ is a time series (i.e. *one* realization). This is what we often denote $\{x_t\}$.
- \blacktriangleright $X(t, \omega)$ is an observation. This is what we often denote x_t .
- ▶ In this course we restrict ourselves to the case where time is discrete, and the realizations take values on the real numbers (continuous range).

5.2 Stochastic processes and their moments

Stochastic Processes – illustration

5.2 Stochastic processes and their moments

Stochastic Processes – illustration

Stochastic Processes – illustration

Stochastic Processes – illustration

 $\ddot{ }$

Demo i R:

```
par(mfrow=c(1,2))# Generate realizations
n < -100x1 <- filter(rnorm(n), 0.9, "recursive")
plot(x1, type="b", ylim=c(-6, 6))x2 <- filter(rnorm(n), 0.9, "recursive")
lines(x2, type="b", col=2)
x3 <- filter(rnorm(n), 0.9, "recursive")
lines(x3, type="b", col=3)
```

```
# Generate 1000 realizations
X <- matrix(filter(rnorm(1000*n), 0.9, "recursive"), nrow=n)
# One realization (i.e. a time series)
X[ ,1]
# Realization of the stochastic variable at one time point
hist(X[50, 1)
```


Complete Characterization

In the end a stochastic process is just a multivariate variable.

Complete Characterization

In the end a stochastic process is just a multivariate variable. Thus, from lecture 1, it is characterised by its n -dimensional probability density:

 $f_{X(t_1),...,X(t_n)}(x_1,...,x_n)$

2nd order moment representation

Mean function:

$$
\mu(t) = E[X(t)] = \int_{-\infty}^{\infty} x f_{X(t)}(x) dx,
$$

Autocovariance function:

$$
\gamma_{XX}(t_1, t_2) = \gamma(t_1, t_2) = \text{Cov}[X(t_1), X(t_2)]
$$

=
$$
E[(X(t_1) - \mu(t_1))(X(t_2) - \mu(t_2))]
$$

The variance function is obtained from $\gamma(t_1, t_2)$ when $t_1 = t_2 = t$:

$$
\sigma^{2}(t) = V[X(t)] = E\left[(X(t) - \mu(t))^{2} \right]
$$

Stationarity

A process $\{X(t)\}\$ is said to be *strongly stationary* if all finite-dimensional distributions are invariant for changes in time, i.e. for every n, and for any set (t_1, t_2, \ldots, t_n) and for any h it holds

$$
f_{X(t_1),\cdots,X(t_n)}(x_1,\cdots,x_n)=f_{X(t_1+h),\cdots,X(t_n+h)}(x_1,\cdots,x_n)
$$

Stationarity

A process $\{X(t)\}\$ is said to be *strongly stationary* if all finite-dimensional distributions are invariant for changes in time, i.e. for every n, and for any set (t_1, t_2, \ldots, t_n) and for any h it holds

$$
f_{X(t_1),\cdots,X(t_n)}(x_1,\cdots,x_n)=f_{X(t_1+h),\cdots,X(t_n+h)}(x_1,\cdots,x_n)
$$

- A process $\{X(t)\}\$ is said to be *weakly stationary of order k* if all the first k moments are invariant to changes in time
- \triangleright A weakly stationary process of order 2 is simply called *weakly stationary* or just *stationary*:

$$
\mu(t) = \mu \quad \sigma^2(t) = \sigma^2 \quad \gamma(t_1, t_2) = \gamma(t_1 - t_2)
$$

Ergodicity

- ▶ In time series analysis we normally assume that we have access to one realization only
- \blacktriangleright We therefore need to be able to determine characteristics of the process X_t from one realization x_t

Ergodicity

- ▶ In time series analysis we normally assume that we have access to one realization only
- \blacktriangleright We therefore need to be able to determine characteristics of the process X_t from one realization x_t
- \blacktriangleright It is often enough to require the process to be mean-ergodic:

$$
E[X(t)] = \int_{\Omega} x(t, \omega) f(\omega) d\omega = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t, \omega) dt
$$

i.e. if the mean of the ensemble equals the mean over time

Some intuitive examples, not directly related to time series: <http://news.softpedia.com/news/What-is-ergodicity-15686.shtml>
▶ Normal processes (also called Gaussian processes): All finite-dimensional distribution functions are (multivariate) normal distributions

- ▶ Normal processes (also called Gaussian processes): All finite-dimensional distribution functions are (multivariate) normal distributions
- \triangleright Markov processes: The conditional distribution depends only on the latest state of the process:

 $P{X(t_n) \leq x | X(t_{n-1}), \cdots, X(t_1) } = P{X(t_n) \leq x | X(t_{n-1}) }$

- ▶ Normal processes (also called *Gaussian processes*): All finite-dimensional distribution functions are (multivariate) normal distributions
- \triangleright Markov processes: The conditional distribution depends only on the latest state of the process:

 $P{X(t_n) \leq x | X(t_{n-1}), \cdots, X(t_1) } = P{X(t_n) \leq x | X(t_{n-1}) }$

Deterministic processes: Can be predicted without uncertainty from past observations

- ▶ Normal processes (also called Gaussian processes): All finite-dimensional distribution functions are (multivariate) normal distributions
- Markov processes: The conditional distribution depends only on the latest state of the process:

 $P{X(t_n) \leq x | X(t_{n-1}), \cdots, X(t_1) } = P{X(t_n) \leq x | X(t_{n-1}) }$

- Deterministic processes: Can be predicted without uncertainty from past observations
- Pure stochastic processes: Can be written as a linear combination of uncorrelated random variables

- ▶ Normal processes (also called Gaussian processes): All finite-dimensional distribution functions are (multivariate) normal distributions
- Markov processes: The conditional distribution depends only on the latest state of the process:

 $P{X(t_n) \leq x | X(t_{n-1}), \cdots, X(t_1) } = P{X(t_n) \leq x | X(t_{n-1}) }$

- ▶ Deterministic processes: Can be predicted without uncertainty from past observations
- Pure stochastic processes: Can be written as a linear combination of uncorrelated random variables
- ▶ Decomposition: $X_t = S_t + D_t$, where S_t is a pure stochastic process and D_t is a deterministic process.

Summed Squared Residuals

$$
SS_{\text{average}} = \sum_{i}^{n} Residual_{i}^{2}
$$

Summed Squared Residuals

$$
SS_{\text{lin}} = \sum_{i}^{n} Residual_{i}^{2}
$$

How to calculate correlation?

Two vectors with corresponding elements x_i and $y_i.$

$$
R^2 = \frac{SS_{\text{average}} - SS_{\text{lin}}}{SS_{\text{average}}}
$$

▶ For stationary processes: Only dependent on the time difference $\tau = t_2 - t_1$

▶ For stationary processes: Only dependent on the time difference $\tau = t_2 - t_1$

▶ Autocovariance:

$$
\gamma(\tau) = \gamma_{XX}(\tau) = \text{Cov}[X(t), X(t+\tau)] = E[X(t)X(t+\tau)]
$$

▶ For stationary processes: Only dependent on the time difference $\tau = t_2 - t_1$

▶ Autocovariance:

$$
\gamma(\tau) = \gamma_{XX}(\tau) = \text{Cov}[X(t), X(t+\tau)] = E[X(t)X(t+\tau)]
$$

$$
\blacktriangleright
$$
 Autocorrelation:

$$
\rho(\tau) = \rho_{XX}(\tau) = \gamma_{XX}(\tau)/\gamma_{XX}(0) = \gamma_{XX}(\tau)/\sigma_X^2
$$

▶ For stationary processes: Only dependent on the time difference $\tau = t_2 - t_1$

▶ Autocovariance:

$$
\gamma(\tau) = \gamma_{XX}(\tau) = \text{Cov}[X(t), X(t+\tau)] = E[X(t)X(t+\tau)]
$$

$$
\blacktriangleright
$$
 Autocorrelation:

$$
\rho(\tau) = \rho_{XX}(\tau) = \gamma_{XX}(\tau)/\gamma_{XX}(0) = \gamma_{XX}(\tau)/\sigma_X^2
$$

▶ Some properties of the autocovariance function:

$$
\blacktriangleright \ \gamma(\tau) = \gamma(-\tau)
$$

 \blacktriangleright $|\gamma(\tau)| < \gamma(0)$

ACF

```
# Simulate a process
n \le -100x <- filter(rnorm(n), 0.9, "recursive")
plot(x)
```

```
# The acf and "height" of "lag 1 bar"
val \leftarrow acf(x)val[1]
# The correlation with lag 1
cor(x, lagvec(x,1), use="complete.obs")
```


White noise

▶ Def. 5.9: $\{\varepsilon_t\}$ is a sequence of mutually uncorrelated identically distributed random variables, where:

$$
\blacktriangleright \mu_t = \mathsf{E}[\varepsilon_t] = 0
$$

$$
\blacktriangleright \sigma_t = \text{Var}[\varepsilon_t] = \sigma_{\varepsilon}^2
$$

$$
\blacktriangleright \ \ \gamma_{\varepsilon}(k) = \mathsf{Cov}[\varepsilon_t, \varepsilon_{t+k}] = 0, \text{ for } k \neq 0
$$

How many of the ACF bars stick of the CI if white noise?

White noise

 \triangleright Def. 5.9: $\{\varepsilon_t\}$ is a sequence of mutually uncorrelated identically distributed random variables, where:

$$
\blacktriangleright \mu_t = \mathsf{E}[\varepsilon_t] = 0
$$

$$
\blacktriangleright \sigma_t = \text{Var}[\varepsilon_t] = \sigma_{\varepsilon}^2
$$

$$
\blacktriangleright \ \ \gamma_{\varepsilon}(k) = \mathsf{Cov}[\varepsilon_t, \varepsilon_{t+k}] = 0, \text{ for } k \neq 0
$$

A small game! Go try it now: Can you make white noise? Can you make an alternating pattern? Can you make an alternating pattern with "longer period"? Can you make a slow decay to zero?

```
x \le readline("Write a sequence of numbers from 0 to 9\n\langle n''\ranglex \leftarrow as.numeric(strsplit(x,"")[[1]])
act(x)
```
More ACF...

######## # ACF of a sine $w \le -10$ $x \leftarrow \sin((1:1000)*2*pi*(\sqrt{1000}))$

More ACF...

######## # ACF of a sine $w \le -10$ $x \leftarrow \sin((1:1000)*2*pi*(w/1000))$

Plot it par(mfrow=c(1,2)) $plot(x)$ # The ACF is actually also a sine! acf(x, lag.max=500)

Can you "screw it" and make it look like white noise up by altering a single value in x?

 $\#x$ [100] <- ?? $\# \text{acf}(x, \text{lag.max}=500)$

Linear processes

A linear process ${Y_t}$ is a process that can be written on the form

$$
Y_t - \mu = \sum_{i=0}^{\infty} \psi_i \varepsilon_{t-i}
$$

where μ is the mean value of the process and

- $\blacktriangleright \{\varepsilon_t\}$ is white noise, i.e. a sequence of uncorrelated, identically distributed random variables.
- $\blacktriangleright \{\varepsilon_t\}$ can be scaled so that $\psi_0 = 1$
- \blacktriangleright Without loss of generality we assume $\mu = 0$

ψ - and π -weights

▶ Transfer function and linear process:

$$
\psi(B) = 1 + \sum_{i=1}^{\infty} \psi_i B^i \qquad Y_t = \psi(B)\varepsilon_t
$$

 \blacktriangleright Inverse operator (if it exists) and the linear process:

$$
\pi(B) = 1 + \sum_{i=1}^{\infty} \pi_i B^i \qquad \pi(B) Y_t = \varepsilon_t,
$$

 \blacktriangleright Autocovariance using ψ -weights:

$$
\gamma(k) = \text{Cov}[Y_t, Y_{t+k}] = \text{Cov}\left[\sum_{i=0}^{\infty} \psi_i \varepsilon_{t-i}, \sum_{i=0}^{\infty} \psi_i \varepsilon_{t+k-i}\right] = \sigma_{\varepsilon}^2 \sum_{i=0}^{\infty} \psi_i \psi_{i+k}
$$

Stationarity and invertibility

The linear process $Y_t = \psi(B)\varepsilon_t$ is stationary if

$$
\psi(z)=\sum_{i=0}^\infty \psi_i z^{-i}
$$

converges for $|z| \ge 1$ (i.e. old values of ε_t are down-weighted)

The linear process $\pi(B)Y_t = \varepsilon_t$ is said to be *invertible* if

$$
\pi(z) = \sum_{i=0}^{\infty} \pi_i z^{-i}
$$

converges for $|z| \ge 1$ (i.e. ε_t can be calculated from recent values of Y_t)
Linear process as a statistical model?

$$
Y_t = -\pi_1 Y_{t-1} - \pi_2 Y_{t-2} \ldots + \varepsilon_t + \psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-2} + \psi_3 \varepsilon_{t-3} + \ldots
$$

- \blacktriangleright Observations: $Y_1, Y_2, Y_3, \ldots, Y_N$
- \blacktriangleright Task: Find an infinite number of parameters from N observations!
- ▶ Solution: Restrict the sequence 1, ψ_1 , ψ_2 , ψ_3 , . . . Which gives us the famous ARMA model.