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Week 4: Outline of the lecture

▶ Operators; the backward shift operator; sec. 4.5.

▶ Stochastic processes in general: Sec 5.1, 5.2, 5.3 [except 5.3.2].
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Operators; The backwards shift operator B

▶ An operator A is (here) a function of a time series {xt} (or a stochastic process {Xt}).
▶ Application of an operator on a time series {xt} yields a new time series {Axt}. Likewise of a

stochastic process {AXt}.

▶ Most important operator for us: The backwards shift operator B : Bxt = xt−1. Notice
B j xt = xt−j .

▶ All other operators we shall consider in this lecture may be expressed in terms of B .
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Question

t − 3 t − 2 t − 1 t t + 1 t + 2 t + 3

xt 0.2 0.1 1.3 0.8 0.4 0.1 0.5

B j xt 0.2 0.1 1.3 0.8 0.4

What is j ?
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The forward shift F

The forward shift operator

▶ Fxt = xt+1; F
j xt = xt+j ;

How can F be expressed in terms of B? (Bxt = xt−1)

▶ Combining a forward and backward shift yields the identity operator; BFxt = Bxt+1 = xt , ie.
F and B are each others inverse: B−1 = F and F−1 = B .
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The difference operator ∇

The difference operator

▶ ∇xt = xt − xt−1

▶ How can ∇ be expressed with B? A: ∇ = 1− B or B: ∇ = 1+ B−1

= (1− B)xt .

▶ Thus: ∇ = 1− B .
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The summation S

Sxt = xt + xt−1 + xt−2 + . . .

= xt + Bxt + B2xt . . .

= (1+ B + B2 + . . .)xt

▶ Summation, then difference (using Sxt = xt + Sxt−1)

∇Sxt = Sxt − Sxt−1 = xt + Sxt−1 − Sxt−1 = xt

▶ Difference, then summation

S∇xt = (1+ B + B2 . . .)xt − (1+ B + B2 . . .)xt−1

= (1+ B + B2 . . .)xt − (B + B2 . . .)xt = xt

▶ So ∇ and S are each others inverse:

∇−1 =
1

1− B
= 1+ B + B2 + . . . = S
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In R:

x <- 1:10

x

diff(x)

cumsum(x)

# Not so nice in the ends!

cumsum(diff(x))

diff(cumsum(x))

# Put a zero in beginning to fix it

cumsum(diff(c(0,x)))

diff(cumsum(c(0,x)))
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Shift operator is simply the most important:

lagvec <- function(x, lag){

if (lag > 0) {

## Lag x, i.e. delay x lag steps

return(c(rep(NA, lag), x[1:(length(x) - lag)]))

}else if(lag < 0) {

## Lag x, i.e. delay x lag steps

return(c(x[(abs(lag) + 1):length(x)], rep(NA, abs(lag))))

}else{

## lag = 0, return x

return(x)

}

}

Lag to a data frame:

lagdf <- function(x, lag) {

# Lag x, i.e. delay x lag steps

if (lag > 0) {

x[(lag+1):nrow(x), ] <- x[1:(nrow(x)-lag), ]

x[1:lag, ] <- NA

}else if(lag < 0) {

# Lag x "ahead in time"

x[1:(nrow(x)-abs(lag)), ] <- x[(abs(lag)+1):nrow(x), ]

x[(nrow(x)-abs(lag)+1):nrow(x), ] <- NA

}

return(x)
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Properties of B , F , ∇ and S

▶ The operators are all linear, ie.

H [axt + byt ] = aH [xt ] + bH [yt ]

▶ The operators may be combined into new operators:
The power series

a(z) =

∞∑
i=0

aiz
i

defines a new operator from an operator H by linear combinations:

a(H ) =

∞∑
i=0

aiH
i
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Examples of combined operators

▶ ∇−1:

1

1− z
=

∞∑
i=0

z i so ∇−1 =
1

1− B
=

∞∑
i=0

B i = S

▶ Operator polynomial of order q :

θ(z) =

q∑
i=0

θiz
i

ie. θi = 0 for i > q .

θ(B) = (1+ θ1B + · · ·+ θqBq)

where θ0 is chosen to be 1
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Stochastic Processes – in general

▶ Function: X (t , ω)

▶ Time: t ∈ T

▶ Realization: ω ∈ Ω

▶ Index set: T

▶ Sample Space: Ω

▶ X (·, ·) is a stochastic process

▶ X (t , ·) is a random variable

▶ X (·, ω) is a time series (i.e. one realization). This is what we often denote {xt}.
▶ X (t , ω) is an observation. This is what we often denote xt .

▶ In this course we restrict ourselves to the case where time is discrete, and the realizations take
values on the real numbers (continuous range).
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Stochastic Processes – illustration
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Demo i R:

par(mfrow=c(1,2))

# Generate realizations

n <- 100

x1 <- filter(rnorm(n), 0.9, "recursive")

plot(x1, type="b", ylim=c(-6,6))

x2 <- filter(rnorm(n), 0.9, "recursive")

lines(x2, type="b", col=2)

x3 <- filter(rnorm(n), 0.9, "recursive")

lines(x3, type="b", col=3)

# Generate 1000 realizations

X <- matrix(filter(rnorm(1000*n), 0.9, "recursive"), nrow=n)

# One realization (i.e. a time series)

X[ ,1]

# Realization of the stochastic variable at one time point

hist(X[50, ])
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Complete Characterization

In the end a stochastic process is just a multivariate variable.

Thus, from lecture 1, it is
characterised by its n-dimensional probability density:

fX (t1),...,X (tn )(x1, . . . , xn)
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2nd order moment representation

Mean function:

µ(t) = E [X (t)] =

∫ ∞

−∞
x fX (t)(x) dx ,

Autocovariance function:

γXX (t1, t2) = γ(t1, t2) = Cov [X (t1),X (t2)]

= E [(X (t1)− µ(t1))(X (t2)− µ(t2))]

The variance function is obtained from γ(t1, t2) when t1 = t2 = t :

σ2(t) = V [X (t)] = E
[
(X (t)− µ(t))2

]
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Stationarity

▶ A process {X (t)} is said to be strongly stationary if all finite-dimensional distributions are
invariant for changes in time, i.e. for every n, and for any set (t1, t2, . . . , tn) and for any h it
holds

fX (t1),··· ,X (tn )(x1, · · · , xn) = fX (t1+h),··· ,X (tn+h)(x1, · · · , xn)

▶ A process {X (t)} is said to be weakly stationary of order k if all the first k moments are
invariant to changes in time

▶ A weakly stationary process of order 2 is simply called weakly stationary or just stationary:

µ(t) = µ σ2(t) = σ2 γ(t1, t2) = γ(t1 − t2)
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Ergodicity

▶ In time series analysis we normally assume that we have access to one realization only

▶ We therefore need to be able to determine characteristics of the process Xt from one
realization xt

▶ It is often enough to require the process to be mean-ergodic:

E [X (t)] =

∫
Ω

x(t , ω)f (ω) dω = lim
T→∞

1

2T

∫ T

−T
x(t , ω) dt

i.e. if the mean of the ensemble equals the mean over time

Some intuitive examples, not directly related to time series:
http://news.softpedia.com/news/What-is-ergodicity-15686.shtml
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Special processes

▶ Normal processes (also called Gaussian processes): All finite-dimensional distribution functions
are (multivariate) normal distributions

▶ Markov processes: The conditional distribution depends only on the latest state of the process:

P{X (tn) ≤ x |X (tn−1), · · · ,X (t1)} = P{X (tn) ≤ x |X (tn−1)}

▶ Deterministic processes: Can be predicted without uncertainty from past observations

▶ Pure stochastic processes: Can be written as a linear combination of uncorrelated random
variables

▶ Decomposition: Xt = St +Dt , where St is a pure stochastic process and Dt is a deterministic
process.
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Correlation

-2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

x

y
Correlation -0.901

Residual Average

Summed Squared Residuals

SSaverage =

n∑
i

Residual2i
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Correlation
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Residual

Linear regression

Summed Squared Residuals

SSlin =

n∑
i

Residual2i
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How to calculate correlation?

Two vectors with corresponding elements xi and yi .

R2 =
SSaverage − SSlin

SSaverage
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Correlation
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Average
Lin. reg.

R2 =
SSaverage − SSlin

SSaverage

=
270.548− 50.81256

270.548

= 0.8121865

and

Cor = sign(slope) · R
= −0.9012139
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Autocovariance and autocorrelation

▶ For stationary processes: Only dependent on the time difference τ = t2 − t1

▶ Autocovariance:

γ(τ) = γXX (τ) = Cov[X (t),X (t + τ)] = E [X (t)X (t + τ)]

▶ Autocorrelation:
ρ(τ) = ρXX (τ) = γXX (τ)/γXX (0) = γXX (τ)/σ

2
X

▶ Some properties of the autocovariance function:

▶ γ(τ) = γ(−τ)
▶ |γ(τ)| ≤ γ(0)
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ACF
# Simulate a process

n <- 100

x <- filter(rnorm(n), 0.9, "recursive")

plot(x)

# The acf and "height" of "lag 1 bar"

val <- acf(x)

val[1]

# The correlation with lag 1

cor(x, lagvec(x,1), use="complete.obs")
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White noise

▶ Def. 5.9: {εt} is a sequence of mutually uncorrelated identically distributed random variables,
where:

▶ µt = E[εt ] = 0

▶ σt = Var[εt ] = σ
2
ε

▶ γε(k) = Cov[εt , εt+k ] = 0, for k ̸= 0

How many of the ACF
bars stick of the CI if
white noise?
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A small game! Go try it now: Can you make white noise? Can you make an alternating pattern?
Can you make an alternating pattern with ”longer period”? Can you make a slow decay to zero?

x <- readline("Write a sequence of numbers from 0 to 9\n")

x <- as.numeric(strsplit(x,"")[[1]])

acf(x)
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More ACF...
########

# ACF of a sine

w <- 10

x <- sin((1:1000)*2*pi*(w/1000))

# Plot it

par(mfrow=c(1,2))

plot(x)

# The ACF is actually also a sine!

acf(x, lag.max=500)

# Can you "screw it" and make it look like white noise up by altering a single value in x?

#x[100] <- ??

#acf(x, lag.max=500)
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Linear processes

▶ A linear process {Yt} is a process that can be written on the form

Yt − µ =
∞∑
i=0

ψiεt−i

where µ is the mean value of the process and

▶ {εt} is white noise, i.e. a sequence of uncorrelated, identically distributed random variables.

▶ {εt} can be scaled so that ψ0 = 1

▶ Without loss of generality we assume µ = 0
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ψ- and π-weights

▶ Transfer function and linear process:

ψ(B) = 1+

∞∑
i=1

ψiB
i Yt = ψ(B)εt

▶ Inverse operator (if it exists) and the linear process:

π(B) = 1+

∞∑
i=1

πiB
i π(B)Yt = εt ,

▶ Autocovariance using ψ-weights:

γ(k) = Cov [Yt ,Yt+k ] = Cov

[ ∞∑
i=0

ψiεt−i ,

∞∑
i=0

ψiεt+k−i

]
= σ2

ε

∞∑
i=0

ψiψi+k
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Stationarity and invertibility

▶ The linear process Yt = ψ(B)εt is stationary if

ψ(z) =

∞∑
i=0

ψiz
−i

converges for |z | ≥ 1 (i.e. old values of εt are down-weighted)

▶ The linear process π(B)Yt = εt is said to be invertible if

π(z) =

∞∑
i=0

πiz
−i

converges for |z | ≥ 1 (i.e. εt can be calculated from recent values of Yt)
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Linear process as a statistical model?

Yt = −π1Yt−1 − π2Yt−2 . . .+ εt + ψ1εt−1 + ψ2εt−2 ++ψ3εt−3 + . . .

▶ Observations: Y1,Y2,Y3, . . . ,YN

▶ Task: Find an infinite number of parameters from N observations!

▶ Solution: Restrict the sequence 1, ψ1, ψ2, ψ3, . . . - Which gives us the famous ARMA model.
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