Time Series Analysis

Week 4 - Introduction to Stochastic Processes, Operators and Linear Systems

Peder Bacher

Department of Applied Mathematics and Computer Science

Technical University of Denmark

March 21, 2024

Week 4: Outline of the lecture

- ▶ Operators; the backward shift operator; sec. 4.5.
- ► Stochastic processes in general: Sec 5.1, 5.2, 5.3 [except 5.3.2].

Operators; The backwards shift operator B

- ▶ An operator A is (here) a function of a time series $\{x_t\}$ (or a stochastic process $\{X_t\}$).
- ▶ Application of an operator on a time series $\{x_t\}$ yields a new time series $\{Ax_t\}$. Likewise of a stochastic process $\{AX_t\}$.
- Most important operator for us: The backwards shift operator $B: Bx_t = x_{t-1}$. Notice $B^j x_t = x_{t-j}$.
- \triangleright All other operators we shall consider in this lecture may be expressed in terms of B.

The forward shift F

The forward shift operator

- $ightharpoonup Fx_t=x_{t+1}$; $F^jx_t=x_{t+j}$; How can F be expressed in terms of B? $(Bx_t=x_{t-1})$
- Combining a forward and backward shift yields the identity operator; $BFx_t = Bx_{t+1} = x_t$, ie. F and B are each others inverse: $B^{-1} = F$ and $F^{-1} = B$.

The difference operator ∇

The difference operator

- $\nabla x_t = x_t x_{t-1} = (1 B)x_t.$
- ▶ Thus: $\nabla = 1 B$.

The summation S

$$Sx_t = x_t + x_{t-1} + x_{t-2} + \dots$$

= $x_t + Bx_t + B^2x_t \dots$
= $(1 + B + B^2 + \dots)x_t$

▶ Summation, then difference (using $Sx_t = x_t + Sx_{t-1}$) $\nabla Sx_t = Sx_t - Sx_{t-1} = x_t + Sx_{t-1} - Sx_{t-1} = x_t$

Difference, then summation

$$S\nabla x_t = (1 + B + B^2 \dots) x_t - (1 + B + B^2 \dots) x_{t-1}$$

= $(1 + B + B^2 \dots) x_t - (B + B^2 \dots) x_t = x_t$

▶ So ∇ and S are each others inverse:

$$\nabla^{-1} = \frac{1}{1 - B} = 1 + B + B^2 + \dots = S$$

In R:

```
x <- 1:10
x
diff(x)
cumsum(x)
# Not so nice in the ends!
cumsum(diff(x))
diff(cumsum(x))
# Put a zero in beginning to fix it
cumsum(diff(c(0,x)))
diff(cumsum(c(0,x)))</pre>
```

Shift operator is simply the most important:

```
lagvec <- function(x, lag){
    if (lag > 0) {
        ## Lag x, i.e. delay x lag steps
        return(c(rep(NA, lag), x[1:(length(x) - lag)]))
} else if(lag < 0) {
        ## Lag x, i.e. delay x lag steps
        return(c(x[(abs(lag) + 1):length(x)], rep(NA, abs(lag))))
} else{
        ## lag = 0, return x
        return(x)
}</pre>
```

Lag to a data frame:

```
lagdf <- function(x, lag) {
    # Lag x, i.e. delay x lag steps
    if (lag > 0) {
        x[(lag+1):nrow(x), ] <- x[1:(nrow(x)-lag), ]
        x[1:lag, ] <- NA
    }else if(lag < 0) {
        # Lag x "ahead in time"
        x[1:(nrow(x)-abs(lag)), ] <- x[(abs(lag)+1):nrow(x), ]
        x[(nrow(x)-abs(lag)+1):nrow(x), ] <- NA
    }
    return(x)</pre>
```

Properties of B, F, ∇ and S

The operators are all linear, ie.

$$H[ax_t + by_t] = aH[x_t] + bH[y_t]$$

► The operators may be combined into new operators: The power series

$$a(z) = \sum_{i=0}^{\infty} a_i z^i$$

defines a new operator from an operator ${\cal H}$ by linear combinations:

$$a(H) = \sum_{i=0}^{\infty} a_i H^i$$

Examples of combined operators

ightharpoons ∇^{-1} :

$$\frac{1}{1-z} = \sum_{i=0}^{\infty} z^i$$
 so $\nabla^{-1} = \frac{1}{1-B} = \sum_{i=0}^{\infty} B^i = S$

Operator polynomial of order q:

$$\theta(z) = \sum_{i=0}^{q} \theta_i z^i$$

ie. $\theta_i = 0$ for i > q.

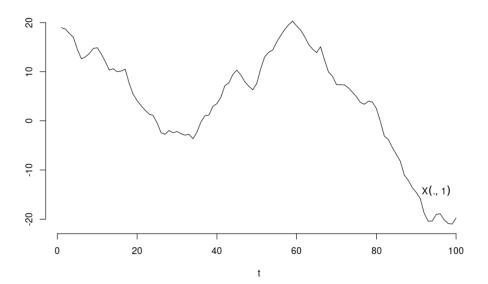
$$\theta(B) = (1 + \theta_1 B + \dots + \theta_q B^q)$$

where θ_0 is chosen to be 1

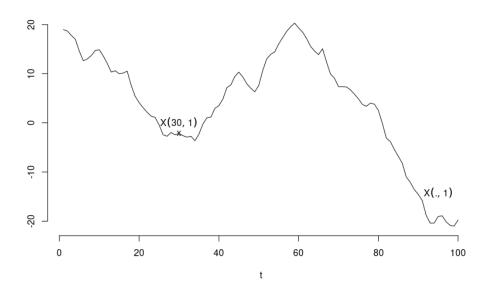
Stochastic Processes – in general

- ▶ Function: $X(t, \omega)$
- ightharpoonup Time: $t \in T$
- ▶ Realization: $\omega \in \Omega$
- ▶ Index set: *T*
- ightharpoonup Sample Space: Ω
- $ightharpoonup X(\cdot,\cdot)$ is a stochastic process
- $ightharpoonup X(t,\cdot)$ is a random variable
- \blacktriangleright $X(\cdot, \omega)$ is a time series (i.e. *one* realization). This is what we often denote $\{x_t\}$.
- $ightharpoonup X(t,\omega)$ is an observation. This is what we often denote x_t .
- In this course we restrict ourselves to the case where time is discrete, and the realizations take values on the real numbers (continuous range).

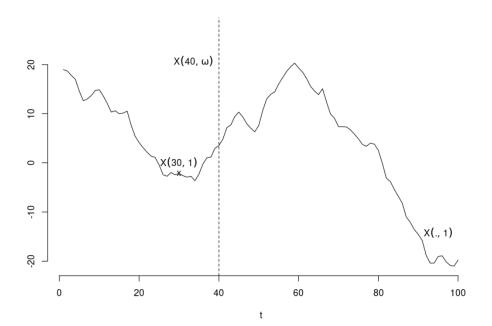
Stochastic Processes - illustration



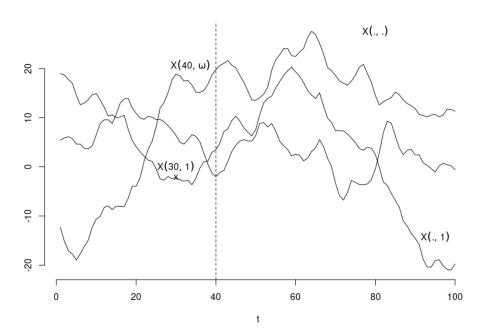
Stochastic Processes - illustration



Stochastic Processes – illustration



Stochastic Processes – illustration



Complete Characterization

In the end a stochastic process is just a multivariate variable. Thus, from lecture 1, it is characterised by its n-dimensional probability density:

$$f_{X(t_1),\ldots,X(t_n)}(x_1,\ldots,x_n)$$

2nd order moment representation

Mean function:

$$\mu(t) = E[X(t)] = \int_{-\infty}^{\infty} x f_{X(t)}(x) dx,$$

Autocovariance function:

$$\gamma_{XX}(t_1, t_2) = \gamma(t_1, t_2) = \text{Cov}[X(t_1), X(t_2)]$$

$$= E[(X(t_1) - \mu(t_1))(X(t_2) - \mu(t_2))]$$

The variance function is obtained from $\gamma(t_1, t_2)$ when $t_1 = t_2 = t$:

$$\sigma^{2}(t) = V[X(t)] = E[(X(t) - \mu(t))^{2}]$$

Stationarity

A process $\{X(t)\}$ is said to be *strongly stationary* if all finite-dimensional distributions are invariant for changes in time, i.e. for every n, and for any set (t_1, t_2, \ldots, t_n) and for any h it holds

$$f_{X(t_1),\cdots,X(t_n)}(x_1,\cdots,x_n) = f_{X(t_1+h),\cdots,X(t_n+h)}(x_1,\cdots,x_n)$$

- A process $\{X(t)\}$ is said to be *weakly stationary of order* k if all the first k moments are invariant to changes in time
- ▶ A weakly stationary process of order 2 is simply called *weakly stationary* or just *stationary*:

$$\mu(t)=\mu \quad \sigma^2(t)=\sigma^2 \quad \gamma(t_1,t_2)=\gamma(t_1-t_2)$$

Ergodicity

- ▶ In time series analysis we normally assume that we have access to one realization only
- ightharpoonup We therefore need to be able to determine characteristics of the process X_t from one realization x_t
- It is often enough to require the process to be mean-ergodic:

$$E[X(t)] = \int_{\Omega} x(t, \omega) f(\omega) d\omega = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t, \omega) dt$$

i.e. if the mean of the ensemble equals the mean over time

Some intuitive examples, not directly related to time series:

http://news.softpedia.com/news/What-is-ergodicity-15686.shtml

Special processes

- Normal processes (also called Gaussian processes): All finite-dimensional distribution functions are (multivariate) normal distributions
- Markov processes: The conditional distribution depends only on the latest state of the process:

$$P\{X(t_n) \le x | X(t_{n-1}), \dots, X(t_1)\} = P\{X(t_n) \le x | X(t_{n-1})\}$$

- Deterministic processes: Can be predicted without uncertainty from past observations
- Pure stochastic processes: Can be written as a linear combination of uncorrelated random variables
- ▶ Decomposition: $X_t = S_t + D_t$, where S_t is a pure stochastic process and D_t is a deterministic process.

Autocovariance and autocorrelation

- lacktriangle For stationary processes: Only dependent on the time difference $au=t_2-t_1$
- Autocovariance:

$$\gamma(\tau) = \gamma_{XX}(\tau) = \text{Cov}[X(t), X(t+\tau)] = E[X(t)X(t+\tau)]$$

Autocorrelation:

$$\rho(\tau) = \rho_{XX}(\tau) = \gamma_{XX}(\tau)/\gamma_{XX}(0) = \gamma_{XX}(\tau)/\sigma_X^2$$

- ► Some properties of the autocovariance function:

 - $|\gamma(\tau)| \leq \gamma(0)$

White noise

▶ Def. 5.9: $\{\varepsilon_t\}$ is a sequence of mutually uncorrelated identically distributed random variables, where:

$$ightharpoonup \gamma_{\varepsilon}(k) = \mathsf{Cov}[\varepsilon_t, \varepsilon_{t+k}] = 0$$
, for $k \neq 0$

Linear processes

lacktriangle A linear process $\{Y_t\}$ is a process that can be written on the form

$$Y_t - \mu = \sum_{i=0}^{\infty} \psi_i \varepsilon_{t-i}$$

where μ is the mean value of the process and

- $lackbox{}\{arepsilon_t\}$ is white noise, i.e. a sequence of uncorrelated, identically distributed random variables.
- $\{ \varepsilon_t \}$ can be scaled so that $\psi_0 = 1$
- lacktriangle Without loss of generality we assume $\mu=0$

ψ - and π -weights

► Transfer function and linear process:

$$\psi(B) = 1 + \sum_{i=1}^{\infty} \psi_i B^i$$
 $Y_t = \psi(B) \varepsilon_t$

Inverse operator (if it exists) and the linear process:

$$\pi(B) = 1 + \sum_{i=1}^{\infty} \pi_i B^i \qquad \pi(B) Y_t = \varepsilon_t,$$

• Autocovariance using ψ -weights:

$$\gamma(k) = \operatorname{Cov}\left[Y_t, Y_{t+k}\right] = \operatorname{Cov}\left[\sum_{i=0}^{\infty} \psi_i \varepsilon_{t-i}, \sum_{i=0}^{\infty} \psi_i \varepsilon_{t+k-i}\right] = \sigma_{\varepsilon}^2 \sum_{i=0}^{\infty} \psi_i \psi_{i+k}$$

Stationarity and invertibility

▶ The linear process $Y_t = \psi(B)\varepsilon_t$ is stationary if

$$\psi(z) = \sum_{i=0}^{\infty} \psi_i z^{-i}$$

converges for $|z| \geq 1$ (i.e. old values of ε_t are down-weighted)

▶ The linear process $\pi(B) Y_t = \varepsilon_t$ is said to be *invertible* if

$$\pi(z) = \sum_{i=0}^{\infty} \pi_i z^{-i}$$

converges for $|z| \geq 1$ (i.e. ε_t can be calculated from recent values of $Y_t)$

Linear process as a statistical model?

$$Y_t = -\pi_1 Y_{t-1} - \pi_2 Y_{t-2} \ldots + \varepsilon_t + \psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-2} + \psi_3 \varepsilon_{t-3} + \ldots$$

- ightharpoonup Observations: Y_1 , Y_2 , Y_3 , ..., Y_N
- ► Task: Find an infinite number of parameters from *N* observations!
- ightharpoonup Solution: Restrict the sequence 1, ψ_1 , ψ_2 , ψ_3 , ... Which gives us the famous ARMA model.