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Week 4: Outline of the lecture

» Operators; the backward shift operator; sec. 4.5.
> Stochastic processes in general: Sec 5.1, 5.2, 5.3 [except 5.3.2].
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4.5 Frequently used operators

Operators; The backwards shift operator B

» An operator A is (here) a function of a time series {x;} (or a stochastic process {X;}).

> Application of an operator on a time series {z;} yields a new time series { Az; }. Likewise of a
stochastic process {AX;}.

» Most important operator for us: The backwards shift operator B : Bx; = z;_1. Notice
Bj:vt = Tt—j-

» All other operators we shall consider in this lecture may be expressed in terms of B.
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4.5 Frequently used operators

The forward shift F

The forward shift operator

» Fry = ap41; F/z = 45 ; How can F be expressed in terms of B? (Bx; = ;1)

» Combining a forward and backward shift yields the identity operator; BFr; = Bxy 1 = 1y, ie.
F and B are each others inverse: B! = F and F~! = B.
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4.5 Frequently used operators

The difference operator V

The difference operator

> Vfl?t:xt—l't_l :(1—3){1715
> Thus: V=1-B.
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4.5 Frequently used operators

The summation S

Swt:$t+$t_1+$t_2+...
:Z't+th+B2xt...
=(1+B+B*+ ..

» Summation, then difference (using Sz; = x; + Sxi—1)
VSiL't = S.Z't - Sfl?t_l =1+ Sfl?t_l - SZUt_l = It

» Difference, then summation

SVz,=(1+B+B*. )z, —(1+B+B%. )z
:(1+B+BQ)SCt—(B+BQ)$t:$t

» So V and S are each others inverse:

1
V*lzﬁ:1+B+BQ+...:S
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In R:

= <= 1810

b'd

diff(x)

cumsum (x)

# Not so nice in the ends!
cumsum(diff (x))

diff (cumsum(x))

# Put a zero in beginning to fiz it
cumsum(diff (c(0,x)))

diff (cumsum(c(0,x)))
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Shift operator is simply the most important:

lagvec <- function(x, lag){
if (lag > 0) {
## Lag =, ©.e. delay = lag steps
return(c(rep(NA, lag), x[1:(length(x) - lag)l))
}else if(lag < 0) {
## Lag =, ©1.e. delay = lag steps
return(c(x[(abs(lag) + 1):length(x)], rep(NA, abs(lag))))

Yelse{
## lag = 0, return T
return(x)

}

¥
Lag to a data frame:

lagdf <- function(x, lag) {
# Lag =, i.e. delay = lag steps
if (lag > 0) {
x[(lag+1) :nrow(x), ] <- x[1:(nrow(x)-lag), ]
x[1:1lag, ] <- NA
Yelse if(lag < 0) {
# Lag = "ahead in time"
x[1: (nrow(x)-abs(lag)), 1 <- x[(abs(lag)+1):nrow(x), ]
x[(nrow(x)-abs(lag)+1) :nrow(x), ] <- NA
}
return(x)
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4.5 Frequently used operators

Properties of B, F', V and §

P> The operators are all linear, ie.

Hlaz; + by = aH[x] + bH [y¢]

» The operators may be combined into new operators:

The power series
o0
a(z) = E a; 2"
i=0

defines a new operator from an operator H by linear combinations:

a(H) = i (L/L'Hi
=0
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Examples of combined operators

> v

1 1
_ Z i -1 _ _ Z i _
1— 2 = : z so V = ? = : B'=S
1=0 1=0
» Operator polynomial of order g:

q
0(z) = Z@izi
i=0
ie. 8; =0 fori > gq.

6(B) = (1+6,B +---+6,B%)

where 6 is chosen to be 1
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5.2 Stochastic processes and their moments

Stochastic Processes — in general

» Function: X (¢, w)
> Time: te T

» Realization: w € Q2

» Index set: T

» Sample Space: 2

X (-, ) is a stochastic process
X (t,-) is a random variable

X (-, w) is a time series (i.e. one realization). This is what we often denote {z;}.

vV v.vy

X (¢, w) is an observation. This is what we often denote z;.

» |n this course we restrict ourselves to the case where time is discrete, and the realizations take
values on the real numbers (continuous range).
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5.2 Stochastic processes and their moments

Stochastic Processes — illustration
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5.2 Stochastic processes and their moments

Stochastic Processes — illustration
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5.2 Stochastic processes and their moments

Stochastic Processes — illustration
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5.2 Stochastic processes and their moments

Stochastic Processes — illustration
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5.2 Stochastic processes and their moments

Complete Characterization

In the end a stochastic process is just a multivariate variable. Thus, from lecture 1, it is
characterised by its n-dimensional probability density:

fxet), . xy (@, .. Tp)
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5.2 Stochastic processes and their moments

2nd order moment representation

Mean function:
o0

u(t) = E[X (1) = / 2 fx(o(@) da.

Autocovariance function:

Yxx(t1, t2) = (t1, t2) = Cov [X(t1), X(t2)]
= E[(X(t) = p(t))(X(t2) — u(t2))]

The variance function is obtained from «y(t1, t2) when t; = t, = t:

o?(t) = VIX(8)] = B [(X (1) — u(t))?]
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5.2.1.1 Stationary processes

Stationarity

> A process {X(t)} is said to be strongly stationary if all finite-dimensional distributions are

invariant for changes in time, i.e. for every n, and for any set (¢, ta, ..., tn) and for any h it
holds

fX(tl);--,X(tn)(xlr R mn) = fX(t1+h),---,X(tn+h)(xlv T $n)

> A process {X(t)} is said to be weakly stationary of order k if all the first k¥ moments are
invariant to changes in time

> A weakly stationary process of order 2 is simply called weakly stationary or just stationary:

pt)y=p o*(t)=0> At t2) =7(t — t)
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5.2.1.1 Stationary processes

Ergodicity

» In time series analysis we normally assume that we have access to one realization only

» We therefore need to be able to determine characteristics of the process X; from one
realization x;

P It is often enough to require the process to be mean-ergodic:

T
E[X(t)]:/ga;(t,w)f(w) dw = }@m%[Tx(t,w) dt

i.e. if the mean of the ensemble equals the mean over time

Some intuitive examples, not directly related to time series:
http://news.softpedia.com/news/What-is-ergodicity-15686.shtml

22/1


http://news.softpedia.com/news/What-is-ergodicity-15686.shtml

5.2.1.1 Stationary processes

Special processes

» Normal processes (also called Gaussian processes): All finite-dimensional distribution functions
are (multivariate) normal distributions

» Markov processes: The conditional distribution depends only on the latest state of the process:

P{X(tn) < 2| X (tn1), -+ X (1)} = P{X(tn) < 2[X (1)}

» Deterministic processes. Can be predicted without uncertainty from past observations

» Pure stochastic processes: Can be written as a linear combination of uncorrelated random
variables

» Decomposition: X; = S; + Dy, where S; is a pure stochastic process and D; is a deterministic
process.
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5.2.2 Covariance and correlation functions

Autocovariance and autocorrelation

> For stationary processes: Only dependent on the time difference 7 = t5 — 4

» Autocovariance:

(1) = vxx(T) = Cov[X(t), X(t +7)] = E[X(£)X (¢ + 7)]

» Autocorrelation:
o(7) = pxx (T) = ¥xx (7) [7xx (0) = vxx (7) /0%

» Some properties of the autocovariance function:

> (1) = (")
> ()l <2(0)
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5.3 Linear processes

White noise

> Def. 5.9: {e,} is a sequence of mutually uncorrelated identically distributed random variables,
where:

» e = E[gt] =0
> o, = Var[e;] = o2

> ’Yg(k) = COV[Et, 6t+k] = O, for k 7é 0
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5.3 Linear processes

Linear processes

> A linear process { Y;} is a process that can be written on the form
o0
Yi—u=) die
i=0
where u is the mean value of the process and
> {e,} is white noise, i.e. a sequence of uncorrelated, identically distributed random variables.

> {g4} can be scaled so that ¥ =1

» Without loss of generality we assume p =0
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5.3 Linear processes

- and mw-weights

» Transfer function and linear process:

Y(B)=1+> ¥;B" Y, =9(B)e,
i=1
> Inverse operator (if it exists) and the linear process:
m(B) = 1+Z7riBi w(B)Y; = €4,
i=1

» Autocovariance using 1J-weights:

Y(k) = Cov [Vy, Yipi] = Cov | > thigri, Y Yibrphi| =02 Y Yithitx
=0 =0 i=0
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5.3 Linear processes

Stationarity and invertibility

» The linear process Y; = ¢(B)e, is stationary if
> .
P(2) =Y piz
i=0

converges for |z| > 1 (i.e. old values of €, are down-weighted)

» The linear process m(B)Y; = ¢, is said to be invertible if

[e)
m(z) = Z w2 "
i=0

converges for |z| > 1 (i.e. €; can be calculated from recent values of Y3)
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5.3 Linear processes

Linear process as a statistical model?

Yi=—-mY, 1 —mYio.. .+ +P1€1 +P2Ep o+ +P3€ 3+ . ..

» Observations: Y7, Y5, Y3,.. ., YN
» Task: Find an infinite number of parameters from N observations!
» Solution: Restrict the sequence 1, 91, Y2, ¥3, ... - Which gives us the famous ARMA model.

50/1



