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Week 5: Outline of the lecture

▶ Stochastic processes - 2nd part:
▶ MA, AR, and ARMA-processes, Sec. 5.5
▶ Non-stationary models, Sec. 5.6
▶ Seasonal ARIMA models
▶ Optimal Prediction, Sec. 5.7

▶ Estimation of parameters in linear dynamic models, Sec. 6.4
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Linear process as a statistical model?

Yt = εt + ψ1εt−1 + ψ2εt−2 + ψ3εt−3 + . . .

▶ Observations: Y1,Y2,Y3, . . . ,YN

▶ Task: Find an infinite number of parameters from N observations!

▶ Solution:

Restrict the sequence 1, ψ1, ψ2, ψ3, . . .
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MA(q), AR(p), and ARMA(p, q) processes

Yt = εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q

Yt + φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p = εt

Yt + φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p = εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q

{εt} is white noise

Yt = θ(B)εt

φ(B)Yt = εt

φ(B)Yt = θ(B)εt

where

φ(B) = (1+ φ1B + φ1B
2 + . . .+ φpB

p)

θ(B) = (1+ θ1B + θ2B
2 + . . .+ φqB

q)

are polynomials in the backward shift operator B , (BXt = Xt−1, B
2Xt = Xt−2)
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# Write an ARMA simulation

n <- 20000

x <- numeric(n)

# AR1:

# (1 - phi1 * B) * X_t = eps_t

#
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# Function for plot

plotit <- function(x){

layout(rbind(1,2:3))

par(mar=c(3,3,1,1), mgp=c(2, 0.7,0))

plot(x, ylab="X")

acf(x, lag.max=50, lwd=2)

pacf(x, lag.max=50, lwd=2)

}
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# AR(1)

n <- 200

plotit( arima.sim(model=list(ar=c(0.8)), n=n) )
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# MA(2)

plotit( arima.sim(list(ma=c(0.9, 0.8)), n) )
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# arma(1,2)

plotit( arima.sim(list(ar=c(0.8),ma=c(0.9, 0.8)), n) )
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# A simulation function for ARMA simulation, use model as arima.sim, i.e. flip sign of phi (into ar) co-

efficients

sim <- function(model, n, nburnin=100){

n <- n + nburnin

# Take the ar and ma part

ar <- model$ar

ma <- model$ma

# The order (i.e. the number of lags)

p <- length(ar)

q <- length(ma)

# The vector for the simulation result

y <- numeric(n)

# Generate the random normal values

eps <- rnorm(n)

# Run the simulation

for(i in (max(p,q)+1):n){

y[i] <- eps[i] + sum(y[i-(1:p)] * ar) + sum(eps[i-(1:q)] * ma)

}

# Return without the burn-in period

return(y[(nburnin+1):n])

}
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# Test it by comparing

model <- list(ar=c(0.4), ma=c(0.2))

set.seed(12)

sim(model, 10, nburnin=100)

set.seed(12)

arima.sim(model, 10, n.start=100)

# Non-stationary process

# Do the simulation and plot

n <- 200

model <- list(ar=c(1.01))

#arima.sim(model, n)

x <- sim(model, n)

plot(x, type="l", ylab="x", xlab="t")
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Invertibility and Stationarity

▶ A stochastic process is said to be invertible if a finite amount of observations can determine its
state.

▶ A stochastic process is said to be stationary if?

▶ A stochastic process is said to be stationary if its distribution does not change over time.
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Invertibility and Stationarity of ARMA models

▶ MA(q) : Yt = εt + θ1εt−1 + . . .+ θqεt−q

▶ Always stationary
▶ Invertible if the roots in θ(z−1) = 0 with respect to z all are within the unit circle

▶ AR(p) : Yt + φ1Yt−1 + . . .+ φpYt−p = εt
▶ Always invertible
▶ Stationary if the roots of φ(z−1) with respect to z all lie within the unit circle

▶ ARMA(p, q)
▶ Stationary if the roots of φ(z−1) with respect to z all lie within the unit circle
▶ Invertible if the roots in θ(z−1) with respect to z all are within the unit circle
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Autocorrelations

MA(2):
Yt = (1+ 0.9B + 0.8B2)εt

zero after lag 2

AR(1):
(1− 0.8B)Yt = εt
exponential decay (damped sine in case of complex roots)

ARMA(1,2):
(1− 0.8B)Yt = (1+ 0.9B + 0.8B2)εt
exponential decay from lag q + 1− p = 2+ 1− 1 = 2 (damped
sine in case of complex roots)
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Partial autocorrelations

MA(2):
Yt = (1+ 0.9B + 0.8B2)εt

AR(1):
(1− 0.8B)Yt = εt
zero after lag 1

ARMA(1,2):
(1− 0.8B)Yt = (1+ 0.9B + 0.8B2)εt
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Non-stationary time series
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Differencing
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The ARIMA(p, d , q)-process

▶ An ARMA(p, q) model for:
Wt = ∇dYt = (1− B)dYt

where {Yt} is the series

▶ That is:
φ(B)∇dYt = θ(B)εt

▶ If we consider stationarity:
φ(z−1)(1− z−1)d = 0

i.e. d roots in z = 1+ 0i , and the rest inside the unit circle
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5.6 Non-stationary models



Seasonal Models

▶ In general, would you rather use new or old information in your models, for example would you
prefer Yt = θYt−1 + ϵt or Yt = θYt−2 + ϵt?

▶ When and why would it make sense to prefer older information over newer information?
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5.6 Non-stationary models



The (p, d , q)× (P ,D ,Q)s seasonal process

▶ A multiplicative (stationary) ARMA(p, q) model for:

Wt = ∇d∇D
s Yt = (1− B)d(1− Bs)DYt

where {Yt} is the series

▶ That is:
φ(B)Φ(Bs)∇d∇D

s Yt = θ(B)Θ(B
s)εt

▶ If we consider stationarity:

φ(z−1)Φ(z−s)(1− z−1)d(1− z−s)D = 0

i.e. d roots in z = 1+ 0i , D × s roots on the unit circle, and the rest inside the unit circle
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5.6 Non-stationary models



The case d = D = 0; stationary seasonal process

▶ General:
φ(B)Φ(Bs)Yt = θ(B)Θ(B

s)εt

▶ Example:
(1−ΦB12)Yt = εt

▶ Which can also be written:
Yt = ΦYt−12 + εt

i.e. Yt depend on Yt−12, Yt−24, . . . (thereof the name)

▶ How would you think that the auto correlation function looks?
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5.6 Non-stationary models



ACF and PACF of seasonal ARMA models
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ACF and PACF of seasonal ARMA models
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Prediction

▶ At time t we have observations Yt ,Yt−1,Yt−2,Yt−3, . . .

▶ We want a prediction of Yt+k , where k ≥ 1

▶ Thus, we want the conditional expectation:

Ŷt+k |t = E [Yt+k |Yt ,Yt−1,Yt−2, . . .]
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5.7 Optimal prediction of stochastic processes



Example – prediction in the AR(1) model

▶ We write the model like Yt+1 = φYt + εt+1 (note the sign on φ)

▶ 1-step prediction:

Ŷt+1|t = E [Yt+1|Yt ,Yt−1, . . .]

= E [φYt + εt+1|Yt ,Yt−1, . . .]

= φYt + 0 = φYt

▶ 2-step prediction:

Ŷt+2|t = E [Yt+2|Yt ,Yt−1, . . .]

= E [φYt+1 + εt+2|Yt ,Yt−1, . . .]

= φŶt+1|t + 0

= φ2Yt

▶ k-step prediction: Ŷt+k |t = φ
kYt
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= φŶt+1|t + 0

= φ2Yt

▶ k-step prediction: Ŷt+k |t = φ
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= φŶt+1|t + 0

= φ2Yt

▶ k-step prediction: Ŷt+k |t = φ
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Example – prediction in Yt = 0.8Yt−1 + εt

−
1
.5

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

t

25 / 1

5.7 Optimal prediction of stochastic processes



Variance of prediction error for the AR(1)-process

Prediction error:
et+k |t = Yt+k − Ŷt+k |t

= Yt+k − φkYt

Bring it on psi-form (MA-form):

Yt+k = φYt+k−1 + εt+k

= φ(φYt+k−2 + εt+k−1) + εt+k

= φ2Yt+k−2 + φεt+k−1 + εt+k

= φ2(φYt+k−3 + εt+k−2) + φεt+k−1 + εt+k

= φ3Yt+k−3 + φ
2εt+k−2 + φεt+k−1 + εt+k

...

= φkYt + φ
k−1εt+1 + φ

k−2εt+2 + . . .+ φεt+k−1 + εt+k
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Variance of prediction error for the AR(1)-process

Variance of prediction error:

V [et+k |t ] = V [φk−1εt+1 + φ
k−2εt+2 + . . .+ φεt+k−1 + εt+k ]

= (φ2(k−1) + φ2(k−2) + . . .+ φ2 + 1)σ2
ε

(1− α)× 100% prediction interval:

Ŷt+k |t ± uα/2

√
V [et+k |t ]

uα/2 is the α/2-quantile in the standard normal distribution
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Estimation

▶ Assume that we have an appropriate model structure AR(p), MA(q), ARMA(p, q),
ARIMA(p, d , q) with p, d , and q known

▶ Task: Based on the observations find appropriate values of the parameters

▶ The book describes many methods:
▶ Moment estimates
▶ LS-estimates
▶ Prediction error estimates

▶ Conditioned
▶ Unconditioned

▶ ML-estimates
▶ Conditioned
▶ Unconditioned (exact)

28 / 1
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Estimation in AR(2) model

▶ Observations: y1, y2, . . . , yN

▶ Model: yt + φ1yt−1 + φ2yt−2 = ϵt

y3 = φ1y2 + φ2y1 + e3

y4 = φ1y3 + φ2y2 + e4

y5 = φ1y4 + φ2y3 + e5
...

yN = φ1yN−1 + φ2yN−2 + eN y3
...
yN

 =
 −y2 −y1

...
...

−yN−1 −yN−2

[ φ1
φ2

]
+

 e3|2
...
eN |N−1

 Or just:

Y = X θ + ε
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Solution

To minimize the sum of the squared 1-step prediction errors εTε we
use the result for the General Linear Model from Chapter 3:

θ̂ = (XTX )−1XTY

With

X =

 −y2 −y1
...

...
−yN−1 −yN−2

 and Y =

 y3
...
yN


▶ Asymptotically: V (θ̂) = σ2

ϵ (X
TX )−1

▶ How does it generalize to AR(p)-models?

▶ How about ARMA(p,q)-models?
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Least squares for AR

# Test it by comparing

model <- list(ar=c(0.4))

set.seed(12)

sim(model, 10, nburnin=100)

set.seed(12)

x <- arima.sim(model, 100)

X <- lagdf(x, 0:3)

summary(lm(k0 ~ k1, X))

summary(lm(k0 ~ k1 + k2, X))

summary(lm(k0 ~ k1 + k2 + k3, X))
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Maximum Likelihood estimates

▶ ARMA(p, q)-process:

Yt + φ1Yt−1 + . . .+ φpYt−p = εt + θ1εt−1 + . . .+ θqεt−q

▶ Notation:

θT = (φ1, . . . , φp , θ1, . . . , θq)

YT
t = (Yt ,Yt−1, . . . ,Y1)

▶ The Likelihood function is the joint probability distribution function for all observations for
given values of θ and σ2

ε :
L(YN ; θ, σ

2
ε ) = f (YN |θ, σ2

ε )

▶ Given the observations YN we estimate θ and σ2
ε as the values for which the likelihood is

maximized.
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Likelihood example

# see the week5_example_likelihood.R script
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The likelihood function for ARMA(p, q)-models

▶ The random variable YN |YN−1 only contains εN as a random component

▶ {εt} is a white noise process and therefore does not depend on anything

▶ Thus we know that the random variables YN |YN−1 and YN−1 are independent, hence:

f (YN |θ, σ2
ε ) = f (YN |YN−1, θ, σ

2
ε )f (YN−1|θ, σ2

ε )

▶ Repeating these arguments:

L(YN ; θ, σ
2
ε ) =

(
N∏

t=p+1

f (Yt |Yt−1, θ, σ
2
ε )

)
f (Yp |θ, σ2

ε )
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Evaluating the conditional likelihood function

▶ Task: Find the conditional 1-step densities, f (Yt |Yt−1, θ, σ
2
ε ), given specified values of the

parameters θ and σ2
ε

▶ The mean of the random variable Yt |Yt−1 is the the 1-step forecast Ŷt |t−1

▶ The prediction error εt = Yt − Ŷt |t−1 has variance σ2
ε

▶ We assume that the process is Gaussian:

f (Yt |Yt−1, θ, σ
2
ε ) =

1

σε
√
2π
exp

(
−

1

2σ2
ε

(Yt − Ŷt |t−1(θ))
2

)

▶ And therefore:
L(YN ; θ, σ

2
ε ) = (σ

2
ε2π)

−N−p
2 exp

(
−

1

2σ2
ε

N∑
t=p+1

ε2t (θ)

)
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ML-estimates

▶ The (conditional) ML-estimate θ̂ is a prediction error estimate
since it is obtained by minimizing

S(θ) =

N∑
t=p+1

ε2t (θ)

▶ By differentiating w.r.t. σ2
ε it can be shown that the ML-estimate of σ2

ε is (remember that p is
the order of the AR part):

σ̂2
ε = S(θ̂)/(N − p)

▶ The estimate θ̂ is asymptotically unbiased and efficient, and the variance-covariance matrix is
approximately

2σ2
εH

−1

where H contains the 2nd order partial derivatives of S(θ) at the minimum

36 / 1

6.4 Estimation of parameters in standard models



ML-estimates

▶ The (conditional) ML-estimate θ̂ is a prediction error estimate
since it is obtained by minimizing

S(θ) =

N∑
t=p+1

ε2t (θ)

▶ By differentiating w.r.t. σ2
ε it can be shown that the ML-estimate of σ2

ε is (remember that p is
the order of the AR part):

σ̂2
ε = S(θ̂)/(N − p)

▶ The estimate θ̂ is asymptotically unbiased and efficient, and the variance-covariance matrix is
approximately

2σ2
εH

−1

where H contains the 2nd order partial derivatives of S(θ) at the minimum

36 / 1

6.4 Estimation of parameters in standard models



ML-estimates

▶ The (conditional) ML-estimate θ̂ is a prediction error estimate
since it is obtained by minimizing

S(θ) =

N∑
t=p+1

ε2t (θ)

▶ By differentiating w.r.t. σ2
ε it can be shown that the ML-estimate of σ2

ε is (remember that p is
the order of the AR part):

σ̂2
ε = S(θ̂)/(N − p)

▶ The estimate θ̂ is asymptotically unbiased and efficient, and the variance-covariance matrix is
approximately

2σ2
εH

−1

where H contains the 2nd order partial derivatives of S(θ) at the minimum

36 / 1

6.4 Estimation of parameters in standard models



Finding the ML-estimates using the PE-method

▶ 1-step predictions:

Ŷt+1|t = −φ1Yt − . . .− φpYt−p+1 + θ1εt + . . .+ θqεt−q+1

▶ If we use (Condition on) εp = εp−1 = . . . = εp+1−q = 0 we can find:

Ŷp+1|p = −φ1Yp − . . .− φpY1 + θ1εp + . . .+ θqεp−q+1

▶ Which will give us εp+1 = Yp+1 − Ŷp+1|p and we can then calculate Ŷp+2|p+1 and εp+2
. . . and so on until we have all the 1-step prediction errors we need.

▶ We use numerical optimization to find the parameters which minimize the sum of squared
prediction errors
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▶ Which will give us εp+1 = Yp+1 − Ŷp+1|p and we can then calculate Ŷp+2|p+1 and εp+2
. . . and so on until we have all the 1-step prediction errors we need.

▶ We use numerical optimization to find the parameters which minimize the sum of squared
prediction errors

37 / 1

6.4 Estimation of parameters in standard models



Finding the ML-estimates using the PE-method

▶ 1-step predictions:
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