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Week 5: Outline of the lecture

» Stochastic processes - 2nd part:

> MA, AR, and ARMA-processes, Sec. 5.5
» Non-stationary models, Sec. 5.6

» Seasonal ARIMA models

» Optimal Prediction, Sec. 5.7

» Estimation of parameters in linear dynamic models, Sec. 6.4
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Linear process as a statistical model?

Yi=¢€i +16e-1 +ogi2 + Y363+ ...

» Observations: Y7, Y5, Y3, ..., YN

» Task: Find an infinite number of parameters from N observations!

» Solution: Restrict the sequence 1, 91, ¥o, Y3, . ..

5.5 Commonly used linear processes
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5.5 Commonly used linear processes

MA(q), AR(p), and ARMA(p, ¢q) processes

Yi=€r+6161 + 0260+ ...+ 0464
Vit Y1 +¢2Yiot+.. . +¢,Yp =6
Yt + d)l Yt—l + ¢2 Yt—2 + ...+ ¢p Yt—p =& + 918t_1 —+ 925t—2 + ...+ qut—q

{€¢} is white noise

Yt = Q(B)Et
H(B)Y, =&y
¢(B)Y, = 0(B)e,

where

®(B)=(1+¢1B+ ¢p1B*>+ ...+ ¢,BP)
0(B)=(1+6,B+ 0,8+ ...+ ¢,B?)

are polynomials in the backward shift operator B, (BX; = X; 1, B?X; = X;_»)
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5.5 Commonly used linear processes

Invertibility and Stationarity

» A stochastic process is said to be invertible if a finite amount of observations can determine its
state.

[> A stochastic process is said to be stationary if?

» A stochastic process is said to be stationary if its distribution does not change over time.
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Invertibility and Stationarity of ARMA models

> MA(q): Yy =€+ 0161+ ...+ 04614

> Always stationary
> Invertible if the roots in 8(z7') = 0 with respect to z all are within the unit circle

> AR(p): Yi+$1Yia+. .. + Y p=¢
> Always invertible
> Stationary if the roots of ¢(z™') with respect to z all lie within the unit circle

> ARMA(p, q)
> Stationary if the roots of ¢(z™') with respect to z all lie within the unit circle
> Invertible if the roots in §(z ') with respect to z all are within the unit circle
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Autocorrelations vA@)
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zero after lag 2 ‘

ACF()
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exponential decay (damped sine in case of complex roots)
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Partial autocorrelations
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5.6 Non-stationary models

Non-stationary time series
Long term trends

Periodic trends

General time varying behavior
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5.6 Non-stationary models

Differencing
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The ARIMA(p, d, q)-process

> An ARMA(p, ¢) model for:
W, =VlY, = (1 - B)*Y,

where {Y;} is the series

» That is:
$(B)V?Y, = 6(B)e,

» If we consider stationarity:
¢z~ -2 =0

i.e. d roots in z = 1+ 0¢, and the rest inside the unit circle

5.6 Non-stationary models
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5.6 Non-stationary models

Seasonal Models

» In general, would you rather use new or old information in your models, for example would you
prefer Y; =0Y; 1 +¢€,0r Yy =0Y, o+ ¢€,7

» When and why would it make sense to prefer older information over newer information?
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5.6 Non-stationary models

The (p, d, q) x (P, D, Q)¢ seasonal process

> A multiplicative (stationary) ARMA(p, ¢) model for:
W, =vVivPly, =1 -B)1-B) Y,

where {Y;} is the series

» That is:
(B)P(B*)VIVEIY, = 0(B)O(B*)e,

» If we consider stationarity:
¢z ()1 -2 )1 -2)P =0

i.e. d rootsin z =1+ 04, D X s roots on the unit circle, and the rest inside the unit circle
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The case d = D = 0; stationary seasonal process

» General:
d(B)P(B*) Y, =0(B)O(B")e;

» Example:
(1-oB?)Y, =¢,

» Which can also be written:
Yi=®Y; 120+¢

i.e. Yy depend on Y;_ 19, Yi_o4, ... (thereof the name)

5.6 Non-stationary models

» How would you think that the auto correlation function looks?
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ACF and PACF of seasonal ARMA models
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5.7 Optimal prediction of stochastic processes

Prediction

» At time t we have observations Y;, Y; 1, Y; 9, Vi 3, ...
» We want a prediction of Y;ij, where k£ > 1

» Thus, we want the conditional expectation:

?t+k|t =E[Yii|Ye, Vi1, Yio, ..

]
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5.7 Optimal prediction of stochastic processes

Example — prediction in the AR(1) model

> We write the model like Y11 = ¢ Y, + €441 (note the sign on ¢)

» 1-step prediction:

» 2-step prediction:

» k-step prediction:

Yiiue

Yiion

lAft+k|t = ¢k Yy

E[Yin|Yy Y, ]
El¢pY; +ea|Yy, Yioa, .. ]
Y +0=9Y;

ElYiio|Ys, Yica, .. ]
El@Yiy1 + €42l Yy, Yior, .. ]
¢3>t+1|t +0
¢*Y
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5.7 Optimal prediction of stochastic processes

Example — prediction in Y; = 0.8Y; 1 + &
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5.7 Optimal prediction of stochastic processes

Variance of prediction error for the AR(1)-process

Prediction error:
ekt = Ytk — 17t+/c|zt =Y —¢"Y,
Bring it on psi-form (MA-form):
Yiek = ¢Yip—1+ek

= Q(@Yirr—2+Etrk-1) + Ertk

= ¢’ Yigp—2 + O€rrn-1 + E1qk

= ¢*(OYirh—3 + Errh—2) + PErar1 + Evpi

= ¢ Yigrs+drhot i1+ Ek

= "V, + " e + O  Peia o PErh1 + Ertk
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5.7 Optimal prediction of stochastic processes

Variance of prediction error for the AR(1)-process

Variance of prediction error:

Viewr] = V[¢k715t+1 + @ Zerio + o+ PErno + €tk
(¢2(k—1) =+ ¢2(k—2) NI ¢2 =+ 1)0.3

(1 — ) x 100% prediction interval:

Yitrie £ tay2y/ Viesrd

Ug/2 is the a/2-quantile in the standard normal distribution
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6.4 Estimation of parameters in standard models

Estimation

> Assume that we have an appropriate model structure AR(p), MA(q), ARMA(p, q),
ARIMA(p, d, q) with p, d, and ¢ known

» Task: Based on the observations find appropriate values of the parameters

» The book describes many methods:

» Moment estimates

P | S-estimates

» Prediction error estimates
» Conditioned
» Unconditioned

» ML-estimates

> Conditioned
» Unconditioned (exact)
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6.4 Estimation of parameters in standard models

Estimation in AR(2) model

» Observations: y1, %2, ..., YN
> Model: y; + 1y:1 + Pays_o = €

Y3 = $ryp+ Pay1 + €3
Ya = Pryz+ Paro + e
Ys = Prys+Poyz +oes
YN = Pryn—1+ dayn—2 +en

Ys —Y2 —h €32 ust:

. e . " _ Or just:

| | 67| Y = X0
YN —YN-1 —YN-2 ENIN—1 — te
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6.4 Estimation of parameters in standard models

Solution

To minimize the sum of the squared 1-step prediction errors €€ we
use the result for the General Linear Model from Chapter 3:

6=(xTX)'xTy

With — Y2 —1 Y3

—YnNn-1 TYN-2 YN

> Asymptotically: V(0) = o2(XTX)!
> How does it generalize to AR(p)-models?
» How about ARMA(p,q)-models?
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Least squares for AR

# Test <t by comparing
model <- list(ar=c(0.4))
set.seed(12)

sim(model, 10, nburnin=100)
set.seed(12)

X <- arima.sim(model, 100)

X <- lagdf(x, 0:3)

summary (Im(k0 ~ k1, X))

summary (Im(k0 ~ k1 + k2, X))
summary (Im(kO ~ k1 + k2 + k3, X))
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6.4 Estimation of parameters in standard models

Maximum Likelihood estimates

> ARMA(p, q)-process:
Yt +¢1 Yt—l + ... +¢)p Yt_p =&y +915t—1 + ... +9q6t_q

» Notation:
0" = (bu..... Gy 01.....0,)
Y = (Y., Y, ..., Y1)

\
D
[

» The Likelihood function is the joint probability distribution function for all observations for

given values of 6 and o2:
L(Yw:8,07) = f(Yn6,07)

> Given the observations Y we estimate 8 and o2 as the values for which the likelihood is
maximized.
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Likelihood example

# see the weekb_example_likelihood.R script
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6.4 Estimation of parameters in standard models

The likelihood function for ARMA(p, q)-models

» The random variable Yy |Yy_1 only contains € as a random component
> {g;} is a white noise process and therefore does not depend on anything

» Thus we know that the random variables Yy |Yxy_1 and Yy_1 are independent, hence:

f(Yn16,02) = f(YN|YN-1,8,02)f(YNn-1]0,072)

» Repeating these arguments:

N

L(Yn:0,07) = ( 11 f(Yt|Yt_1,e.a?>> F(Y,16.0?2)

t=p+1
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6.4 Estimation of parameters in standard models

Evaluating the conditional likelihood function

» Task: Find the conditional 1-step densities, f(Y;|Y;—1,0,02), given specified values of the
parameters 6 and o2

The mean of the random variable Y;|Y;_; is the the 1-step forecast /}\/ﬂt,l

v Yy

The prediction error £; = Y; — Y, has variance o2

v

We assume that the process is Gaussian:

f(Yi|Y21,0,02) =

1 | - ,
T exp <_%‘3(Yt — Yi:-1(0)) )

v

—P

And therefore: N
L(Yy;0,02) = (022m)" "2 exp | —

;X
292 Z & (6)>

€ t=p+1
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6.4 Estimation of parameters in standard models

ML-estimates

» The (conditional) ML-estimate 8 is a prediction error estimate
since it is obtained by minimizing

> By differentiating w.r.t. 02 it can be shown that the ML-estimate of 02 is (remember that p is
the order of the AR part): R
G2 =S(8)/(N —p)

> The estimate 8 is asymptotically unbiased and efficient, and the variance-covariance matrix is

approximately
202H!

where H contains the 2nd order partial derivatives of S(6) at the minimum
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6.4 Estimation of parameters in standard models

Finding the ML-estimates using the PE-method

» 1-step predictions:

/Yt+1|t == Yi— .. = Vipr1 e+ 08¢t
» If we use (Condition on) €, =€,_1 = ... =€p11-¢ = 0 we can find:
/}}erl\p = —¢1 Yp — ... ¢p Yl + Glep + ...+ 9q£p—q+1

» Which will give us €,11 = Y11 — Yp4q)p and we can then calculate Y, 9,41 and ;12
...and so on until we have all the 1-step prediction errors we need.

» We use numerical optimization to find the parameters which minimize the sum of squared
prediction errors
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