Time Series Analysis

Week 6 - ACF and PACF with a focus on model order selection

Peder Bacher

Department of Applied Mathematics and Computer Science Technical University of Denmark

March 8, 2024

Week 6: Outline of the lecture

- Estimation of auto-covariance and -correlation, Sec. 6.2.1 (and the intro. to 6.2)
- Using the SACF and SPACF for model order selection Sec. 6.5
- Model validation, Sec. 6.6

Autocorrelation

Partial autocorrelation

Autocorrelation

 $\rho(k) = \operatorname{Cor}[Y_t, Y_{t+k}]$

Partial autocorrelation

Autocorrelation

 $\rho(k) = \operatorname{Cor}[Y_t, Y_{t+k}]$

Partial autocorrelation

 $\phi_{kk} = \mathsf{Cor}[Y_t, Y_{t+k} | Y_{t+1}, \dots, Y_{t+k-1}]$

Autocorrelation

$$\rho(k) = \operatorname{Cor}[Y_t, Y_{t+k}]$$

- Sample autocorrelation function (SACF): $\hat{\rho}(k) = r_k = C(k)/C(0)$
- For white noise and $k \neq 0$ it holds that $E[\hat{\rho}(k)] \simeq 0$ and $V[\hat{\rho}(k)] \simeq 1/N$, this gives the bounds $\pm 2/\sqrt{N}$ for deciding when it is not possible to distinguish a value from zero.
- R: acf(x)

Partial autocorrelation

$$\phi_{kk} = \text{Cor}[Y_t, Y_{t+k} | Y_{t+1}, \dots, Y_{t+k-1}]$$

Autocorrelation

$$\rho(k) = \operatorname{Cor}[Y_t, Y_{t+k}]$$

- Sample autocorrelation function (SACF): $\hat{\rho}(k) = r_k = C(k)/C(0)$
- For white noise and $k \neq 0$ it holds that $E[\hat{\rho}(k)] \simeq 0$ and $V[\hat{\rho}(k)] \simeq 1/N$, this gives the bounds $\pm 2/\sqrt{N}$ for deciding when it is not possible to distinguish a value from zero.
- R: acf(x)

Partial autocorrelation

$$\phi_{kk} = \mathsf{Cor}[Y_t, Y_{t+k} | Y_{t+1}, \dots, Y_{t+k-1}]$$

- Sample partial autocorrelation function (SPACF): Use the Yule-Walker equations on ρ(k) (exactly as for the theoretical relations Eq.(5.81)) or as in next slide
- \blacktriangleright It turns out that $\pm 2/\sqrt{N}$ is also appropriate for deciding when the SPACF is zero
- R: acf(x, type="partial") or pacf(x)

```
# Example to show how the PACF is calculated
set.seed(972)
n <- 1000
x <- arima.sim(list(ar=c(0.5,-0.4)), n=n)</pre>
\#acf(x)
#pacf(x)
library(onlineforecast)
D \le lagdf(c(x), 0:50)
# A way to calculate the PACF
lag.max <- 10
pacf1 <- numeric(lag.max)</pre>
# First, calculate it with the function
val <- pacf(x, lag.max, plot=FALSE)</pre>
# Then calc on our own
for(k in 1:lag.max){
  (frml <- pst("k0 ~ 1 + ",pst("k",1:k, collapse=" + ")))</pre>
  fit <- lm(frml, D)</pre>
  pacf1[k] <- fit$coef[pst("k",k)]</pre>
```

```
# It's very close!
pacf1 - val$acf
plot(val$acf, type="b", xlab="lag", ylab="PACF")
lines(pacf1, type="b", col=2)
```


lag

ARIMA models

Today we will see how to identify ARIMA model orders

ARIMA models

- Today we will see how to identify ARIMA model orders
- Basically ARIMA(p, d, q) has
 - ► Auto-Regression order p
 - Moving-Average order q
 - Integration order d

Model building in general

The golden table for ARMA identification

(Table 6.1)

	ACF $\rho(k)$	PACF ϕ_{kk}
AR(p)	Damped exponential and/or sine functions	$\phi_{kk}=0$ for $k>p$
MA(q)	ho(k)=0 for $k>q$	Dominated by damped exponential and or/sine functions
ARMA(p,q)	Damped exponential and/or sine functions after lag $\max(0, q - p)$	Dominated by damped exponen- tial and/or sine functions after lag $max(0, p - q)$

Same series; analysing $\nabla Y_t = (1 - B) Y_t = Y_t - Y_{t-1}$

6.3 Identification

How does C(k) behave for non-stationary series?

$$C(k) = \frac{1}{N} \sum_{t=1}^{N-|k|} (Y_t - \overline{Y}) (Y_{t+|k|} - \overline{Y})$$

6.3 Identification

How does C(k) behave for non-stationary series?

$$C(k) = \frac{1}{N} \sum_{t=1}^{N-|k|} (Y_t - \overline{Y}) (Y_{t+|k|} - \overline{Y})$$

Identification of the order of differencing

- Select the order of differencing d as the first order for which the autocorrelation decreases sufficiently fast towards 0
- ln practice d is 0, 1, or maybe 2
- Sometimes a periodic difference is required, e.g. $Y_t Y_{t-12}$

Identification of the order of differencing

- Select the order of differencing d as the first order for which the autocorrelation decreases sufficiently fast towards 0
- ln practice d is 0, 1, or maybe 2
- Sometimes a periodic difference is required, e.g. $Y_t Y_{t-12}$
- Remember to consider the practical application. E.g. it may be that the system is stationary, but you measured over a too short period

6.3 Identification

Stationarity vs. length of measuring period

0.3 0.1 -0.1 M M ۱ЛЛ --0.5 1976 1977 1978 1979 1980 987 1988 1989 1990 1991 1992 1993 1994 1995 1996

US/CA 30 day interest rate differential

US/CA 30 day interest rate differential

- The <u>model order</u> of an ARMA process model: The number of parameters for the AR and MA part; (p, q).
- The autocorrelation functions can be used as we just did

- The <u>model order</u> of an ARMA process model: The number of parameters for the AR and MA part; (p, q).
- The autocorrelation functions can be used as we just did
- If that method fails to identify (p, q) because the process:
 - Is not a standard AR-proces.
 - Is not a standard MA-proces.
 - Is not a directly identifiable ARMA proces

- The <u>model order</u> of an ARMA process model: The number of parameters for the AR and MA part; (p, q).
- The autocorrelation functions can be used as we just did
- If that method fails to identify (p, q) because the process:
 - Is not a standard AR-proces.
 - Is not a standard MA-proces.
 - Is not a directly identifiable ARMA proces
- then try a small model and analyse the residuals

- The <u>model order</u> of an ARMA process model: The number of parameters for the AR and MA part; (p, q).
- The autocorrelation functions can be used as we just did
- If that method fails to identify (p, q) because the process:
 - Is not a standard AR-proces.
 - Is not a standard MA-proces.
 - Is not a directly identifiable ARMA proces
- then try a small model and analyse the residuals
- and/or Consider transformations
 Typically sqrt, log, square or inverse.

1. (Identification step): Construct a model for your data:

 $\phi(B) Y_t = \theta(B) \varepsilon_t$

2. (Estimation step): Estimate the coefficients $(\phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q)$ and calculate the model residuals $\hat{\varepsilon}_{t|t-1}$

1. (Identification step): Construct a model for your data:

 $\phi(B) Y_t = \theta(B) \varepsilon_t$

- 2. (Estimation step): Estimate the coefficients $(\phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q)$ and calculate the model residuals $\hat{\varepsilon}_{t|t-1}$
- 3. (Model checking step):
 - Are the estimated coefficients significant?

1. (Identification step): Construct a model for your data:

 $\phi(B) Y_t = \theta(B) \varepsilon_t$

- 2. (Estimation step): Estimate the coefficients $(\phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q)$ and calculate the model residuals $\hat{\varepsilon}_{t|t-1}$
- 3. (Model checking step):
 - Are the estimated coefficients significant?
 - Does $\hat{\varepsilon}_{t|t-1}$ resemble white noise?

1. (Identification step): Construct a model for your data:

 $\phi(B) Y_t = \theta(B) \varepsilon_t$

- 2. (Estimation step): Estimate the coefficients $(\phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q)$ and calculate the model residuals $\hat{\varepsilon}_{t|t-1}$
- 3. (Model checking step):
 - Are the estimated coefficients significant?
 - Does $\hat{\varepsilon}_{t|t-1}$ resemble white noise?
 - If so, the model can be described by the ϕ and θ polynomials.

1. (Identification step): Construct a model for your data:

 $\phi(B) Y_t = \theta(B) \varepsilon_t$

- 2. (Estimation step): Estimate the coefficients $(\phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q)$ and calculate the model residuals $\hat{\varepsilon}_{t|t-1}$
- 3. (Model checking step):
 - Are the estimated coefficients significant?
 - Does $\hat{\varepsilon}_{t|t-1}$ resemble white noise?
 - If so, the model can be described by the ϕ and θ polynomials.

If the model residuals do not resemble white noise, then what do they look like?

► $\hat{\varepsilon}_{t+k|t}$ will often have a simpler behavior than Y, if the original model $\phi(B) Y_t = \theta(B) \varepsilon_t$ captures the essential terms of Y's behavior.

- ► $\hat{\varepsilon}_{t+k|t}$ will often have a simpler behavior than Y, if the original model $\phi(B) Y_t = \theta(B) \varepsilon_t$ captures the essential terms of Y's behavior.
- 1. Construct an ARMA description for $\hat{\varepsilon}_{t|t-1}$: $\phi^*(B)\varepsilon_t = \theta^*(B)\varepsilon_t^*$.

- ► $\hat{\varepsilon}_{t+k|t}$ will often have a simpler behavior than Y, if the original model $\phi(B) Y_t = \theta(B) \varepsilon_t$ captures the essential terms of Y's behavior.
- 1. Construct an ARMA description for $\hat{\varepsilon}_{t|t-1}$: $\phi^*(B)\varepsilon_t = \theta^*(B)\varepsilon_t^*$.
- 2. Insert $\varepsilon_t = \phi^{*-1}(B)\theta^*(B)\varepsilon_t^*$ into the original model to obtain the model

 $\phi^*(B)\phi(B) Y_t = \theta(B)\theta^*(B)\varepsilon_t^*$

- ► $\hat{\varepsilon}_{t+k|t}$ will often have a simpler behavior than Y, if the original model $\phi(B) Y_t = \theta(B) \varepsilon_t$ captures the essential terms of Y's behavior.
- 1. Construct an ARMA description for $\hat{\varepsilon}_{t|t-1}$: $\phi^*(B)\varepsilon_t = \theta^*(B)\varepsilon_t^*$.
- 2. Insert $\varepsilon_t = \phi^{*-1}(B)\theta^*(B)\varepsilon_t^*$ into the original model to obtain the model

$$\phi^*(B)\phi(B) Y_t = \theta(B)\theta^*(B)\varepsilon_t^*$$

3. Estimate the parameters in the model above with coefficients in $\phi^* \cdot \phi$, $\theta \cdot \theta^*$ varying freely, and proceed to model check.

Model building in general

Residual Analysis

> The order of the model is the minimum order for which the model errors resemble white noise.

Residual Analysis

- ▶ The order of the model is the minimum order for which the model errors resemble white noise.
- How can we check that the model errors resemble white noise?

Residual Analysis

- ▶ The order of the model is the minimum order for which the model errors resemble white noise.
- How can we check that the model errors resemble white noise?
- First and most important plot the data.

Residual analysis - Plot the data

Residual analysis – Plot the data II

Residual analysis - Plot the data III

Not Normal Distributed

Not Normal Distributed

Residual analysis – Plot the data IV

- If (ε_t) is white noise, the probability that a new value has a different sign than the previous is $\frac{1}{2}$.
- Number of sign changes: $Binom(N-1, \frac{1}{2})$.
- Approx. normal distribution; N((N-1)/2, (N-1)/4):

Normal approximation to Binom(100,0.5)

95% confidence interval for sign changes within 100 white noise residuals: [40; 59]. Actual sign changes from the 100 data: 47.

Sign tests detects both asymmetry and correlation.

Sign tests detects both asymmetry and correlation.

Too few may indicate positive one-step correlation;

Sign tests detects both asymmetry and correlation.

- Too few may indicate positive one-step correlation;
- Too many may indicate negative one-step correlation;

Sign tests detects both asymmetry and correlation.

- Too few may indicate positive one-step correlation;
- Too many may indicate negative one-step correlation;
- Too few or too many may indicate that P(being above the mean) $\neq \frac{1}{2}$ with no correlation.

Residual analysis - other tests

- There is a bunch of other tests out there.
- > You are welcome to use them in assignments, as long as you are sure that you understand them.

▶ Plot $\hat{\varepsilon}_{t|t-1}$; do the residuals look stationary? Do they need a transformation?

- ▶ Plot $\hat{\varepsilon}_{t|t-1}$; do the residuals look stationary? Do they need a transformation?
- Plot estimated ACF and PACF, if there are significant lags, then can we use them to extend the model with an ARMA-structure?

- ▶ Plot $\hat{\varepsilon}_{t|t-1}$; do the residuals look stationary? Do they need a transformation?
- Plot estimated ACF and PACF, if there are significant lags, then can we use them to extend the model with an ARMA-structure?
- Plot histogram and/or qq-plot to see whether residuals are normal distributed, if not, then consider a transformation.

- ▶ Plot $\hat{\varepsilon}_{t|t-1}$; do the residuals look stationary? Do they need a transformation?
- Plot estimated ACF and PACF, if there are significant lags, then can we use them to extend the model with an ARMA-structure?
- Plot histogram and/or qq-plot to see whether residuals are normal distributed, if not, then consider a transformation.
- Perform a couple of statistical tests to get some quantitative measures of whether your residuals are alright.

- ▶ Plot $\hat{\varepsilon}_{t|t-1}$; do the residuals look stationary? Do they need a transformation?
- Plot estimated ACF and PACF, if there are significant lags, then can we use them to extend the model with an ARMA-structure?
- Plot histogram and/or qq-plot to see whether residuals are normal distributed, if not, then consider a transformation.
- Perform a couple of statistical tests to get some quantitative measures of whether your residuals are alright.
- Finally, see whether parameters are significant and if not, remove them (you do not need to redo residuals analysis after this).

Information criteria

When considering multiple non-nested candidate models, information criteria can be used:

- Select the model which minimizes some information criterion.
- Akaike's Information Criterion: $AIC = -2 \log(L(Y_N; \hat{\theta}, \hat{\sigma}_{\varepsilon}^2)) + 2n_{\text{par}}$
- ► Bayesian Information Criterion (preferred): $BIC = -2 \log(L(Y_N; \hat{\theta}, \hat{\sigma}_{\varepsilon}^2)) + \log(N) n_{par}$
- ► AIC is most commonly used, but BIC yields a consistent estimate of the model order.

Cross-validation is possible but slightly less efficient and cumbersome for time series analysis than for other kinds of data.

Cross-validation is possible but slightly less efficient and cumbersome for time series analysis than for other kinds of data.

If we use future measurements we are cheating!

Cross-validation is possible but slightly less efficient and cumbersome for time series analysis than for other kinds of data.

- If we use future measurements we are cheating!
- Thus, it is only possible to split data by having first part be for training, and last part testing.

Cross-validation is possible but slightly less efficient and cumbersome for time series analysis than for other kinds of data.

- If we use future measurements we are cheating!
- > Thus, it is only possible to split data by having first part be for training, and last part testing.

- So we must gradually move the part used for training forward in time, it's called "rolling horizon" cross-validation
- Mainly used for forecasting applications
- Remember a burn-in period and then step forward from there