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Week 6: Outline of the lecture

▶ Estimation of auto-covariance and -correlation, Sec. 6.2.1 (and the intro. to 6.2)

▶ Using the SACF and SPACF for model order selection Sec. 6.5

▶ Model validation, Sec. 6.6
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Autocorrelation and Partial Autocorrelation

Autocorrelation

ρ(k) = Cor[Yt ,Yt+k ]

▶ Sample autocorrelation function (SACF): ρ̂(k) = rk = C (k)/C (0)

▶ For white noise and k ̸= 0 it holds that E [ρ̂(k)] ≃ 0 and V [ρ̂(k)] ≃ 1/N , this gives the
bounds ±2/

√
N for deciding when it is not possible to distinguish a value from zero.

▶ R: acf(x)

Partial autocorrelation

φkk = Cor[Yt ,Yt+k |Yt+1, . . . ,Yt+k−1]

▶ Sample partial autocorrelation function (SPACF): Use the Yule-Walker equations on ρ̂(k)
(exactly as for the theoretical relations Eq.(5.81)) or as in next slide

▶ It turns out that ±2/
√
N is also appropriate for deciding when the SPACF is zero

▶ R: acf(x, type="partial") or pacf(x)
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Autocorrelation and Partial Autocorrelation

# Example to show how the PACF is calculated

set.seed(972)

n <- 1000

x <- arima.sim(list(ar=c(0.5,-0.4)), n=n)

#acf(x)

#pacf(x)

library(onlineforecast)

D <- lagdf(c(x), 0:50)

# A way to calculate the PACF

lag.max <- 10

pacf1 <- numeric(lag.max)

# First, calculate it with the function

val <- pacf(x, lag.max, plot=FALSE)

# Then calc on our own

for(k in 1:lag.max){

(frml <- pst("k0 ~ 1 + ",pst("k",1:k, collapse=" + ")))

fit <- lm(frml, D)

pacf1[k] <- fit$coef[pst("k",k)]

}
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Autocorrelation and Partial Autocorrelation

# It's very close!

pacf1 - val$acf

plot(val$acf, type="b", xlab="lag", ylab="PACF")

lines(pacf1, type="b", col=2)
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ARIMA models

▶ Today we will see how to identify ARIMA model orders

▶ Basically ARIMA(p, d , q) has

▶ Auto-Regression order p

▶ Moving-Average order q

▶ Integration order d
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Model building in general
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Chapter 6: Identification, estimation, and model checking



The golden table for ARMA identification

(Table 6.1)

ACF ρ(k) PACF φkk

AR(p) Damped exponential and/or sine
functions

φkk = 0 for k > p

MA(q) ρ(k) = 0 for k > q Dominated by damped exponential
and or/sine functions

ARMA(p, q) Damped exponential and/or sine
functions after lag max(0, q − p)

Dominated by damped exponen-
tial and/or sine functions after lag
max(0, p − q)
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What would be an appropriate structure?

•
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Same series; analysing ∇Yt = (1− B)Yt = Yt − Yt−1

•
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How does C (k) behave for non-stationary series?

C (k) =
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Identification of the order of differencing

▶ Select the order of differencing d as the first order for which the autocorrelation decreases
sufficiently fast towards 0

▶ In practice d is 0, 1, or maybe 2

▶ Sometimes a periodic difference is required, e.g. Yt −Yt−12

▶ Remember to consider the practical application. E.g. it may be that the system is stationary,
but you measured over a too short period
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Stationarity vs. length of measuring period
US/CA 30 day interest rate differential
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Selection of the Model Order

▶ The model order of an ARMA process model:
The number of parameters for the AR and MA part; (p, q).

▶ The autocorrelation functions can be used - as we just did

▶ If that method fails to identify (p, q) because the process:

▶ Is not a standard AR-proces.

▶ Is not a standard MA-proces.

▶ Is not a directly identifiable ARMA proces

▶ then try a small model and analyse the residuals

▶ and/or Consider transformations
Typically sqrt, log, square or inverse.
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Iterative model building

1. (Identification step): Construct a model for your data:

φ(B)Yt = θ(B)εt

2. (Estimation step): Estimate the coefficients (φ1, . . . , φp , θ1, . . . , θq) and calculate the model
residuals ε̂t |t−1

3. (Model checking step):

▶ Are the estimated coefficients significant?

▶ Does ε̂t |t−1 resemble white noise?

▶ If so, the model can be described by the φ and θ polynomials.

▶ If the model residuals do not resemble white noise, then what do they look like?
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Iterative model building II

▶ ε̂t+k |t will often have a simpler behavior than Y , if the original model φ(B)Yt = θ(B)εt
captures the essential terms of Y ’s behavior.

1. Construct an ARMA description for ε̂t |t−1: φ
∗(B)εt = θ

∗(B)ε∗t .

2. Insert εt = φ
∗−1(B)θ∗(B)ε∗t into the original model to obtain the model

φ∗(B)φ(B)Yt = θ(B)θ
∗(B)ε∗t

3. Estimate the parameters in the model above with coefficients in φ∗ · φ, θ · θ∗ varying freely, and
proceed to model check.
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Model building in general
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Residual Analysis

▶ The order of the model is the minimum order for which the model errors resemble white noise.

▶ How can we check that the model errors resemble white noise?

▶ First and most important - plot the data.
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Residual analysis – Plot the data

0 20 40 60 80 100

−
2

−
1

0
1

2

White noise

data index

re
s
id

u
a
ls

0 20 40 60 80 100

−
2

−
1

0
1

2
3

Not white noise

data index

re
s
id

u
a
ls

0 20 40 60 80 100

−
1

0
1

2
3

4
5

Not white noise

data index

re
s
id

u
a
ls

0 20 40 60 80 100

−
8

−
6

−
4

−
2

0

Not white noise

data index

re
s
id

u
a
ls

25 / 1

6.6 Model checking



Residual analysis – Plot the data II
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Residual analysis – Plot the data III
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Residual analysis – Plot the data IV
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Residual analysis – sign test

▶ If (εt) is white noise, the probability that a new value has a different sign than the previous is 1
2 .

▶ Number of sign changes: Binom(N − 1, 12).

▶ Approx. normal distribution; N ((N − 1)/2, (N − 1)/4):
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Residual analysis – sign test II
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▶ 95% confidence interval for sign changes within 100 white noise residuals: [40; 59]. Actual sign
changes from the 100 data: 47.
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Residual analysis – sign test III

Sign tests detects both asymmetry and correlation.

▶ Too few may indicate positive one-step correlation;

▶ Too many may indicate negative one-step correlation;

▶ Too few or too many may indicate that P(being above the mean) ̸= 1
2 with no correlation.
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Residual analysis - other tests

▶ There is a bunch of other tests out there.

▶ You are welcome to use them in assignments, as long as you are sure that you understand them.
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Residual analysis – summary

▶ Plot ε̂t |t−1; do the residuals look stationary? Do they need a transformation?

▶ Plot estimated ACF and PACF, if there are significant lags, then can we use them to extend
the model with an ARMA-structure?

▶ Plot histogram and/or qq-plot to see whether residuals are normal distributed, if not, then
consider a transformation.

▶ Perform a couple of statistical tests to get some quantitative measures of whether your
residuals are alright.

▶ Finally, see whether parameters are significant and if not, remove them (you do not need to
redo residuals analysis after this).
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Information criteria

When considering multiple non-nested candidate models, information criteria can be used:

▶ Select the model which minimizes some information criterion.

▶ Akaike’s Information Criterion:
AIC = −2 log(L(YN ; θ̂, σ̂

2
ε )) + 2npar

▶ Bayesian Information Criterion (preferred):
BIC = −2 log(L(YN ; θ̂, σ̂

2
ε )) + log(N )npar

▶ AIC is most commonly used, but BIC yields a consistent estimate of the model order.
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Cross validation
Cross-validation is possible but slightly less efficient and cumbersome for time series analysis than
for other kinds of data.

▶ If we use future measurements we are cheating!

▶ Thus, it is only possible to split data by having first part be for training, and last part testing.

▶ So we must gradually move the part used for training forward in time, it’s called ”rolling
horizon”cross-validation

▶ Mainly used for forecasting applications

▶ Remember a burn-in period and then step forward from there
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