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Week 7: Outline of the lecture

▶ Input-Output systems, sec. 4 introduction and 4.1

▶ Linear system notation

▶ The z -transform, section 4.4

▶ Cross Correlation Functions – from Sec. 6.2.2

▶ Transfer function models; identification, estimation, validation, prediction, Chap. 8
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Simplest first order RC-system

Single state model of the temperature in a box:
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Simplest RC-system
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▶ T e
t external and T i

t internal temperature at time t = [1, 2, . . . ,n]

▶ ODE model dTi

dt
=

1

RC
(Te − Ti)
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Try a static model
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▶ A simple linear regression model (εt is the error)

▶ Not describing dynamics

T i
t = ωeT

e
t + εt
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Model validation: check i.i.d. of residuals

6 / 39

Are residuals like white noise?
▶ Check if they are independent and identically distributed

▶ Is ε̂t independent of ε̂t−k for all t and k?
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Model validation: check i.i.d. of residuals

6 / 39

Are residuals like white noise?
▶ Check if they are independent and identically distributed

▶ Is ε̂t independent of ε̂t−k for all t and k?

Nope! There is a pattern left...
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Model validation: Test for i.i.d. with ACF

TEST if residuals are white noise?
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It’s not white nose! How do we find a better model?
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Discretize the ODE

dTi

dt
=

1

RC
(Te − Ti)

It has the solution

Ti(t + ∆t) = Te(t) + e−
∆t
RC

(
Ti(t)− Te(t)

)

if ∆t = 1 and Te is constant between the sample points then

T i
t+1 = e−

1
RC T i

t + (1− e−
1

RC )T e
t

since e−
1

RC is between 0 and 1, then write it as

T i
t+1 = φ1T

i
t + ω1T

e
t

where φ1 and ω1 are between 0 and 1.

Add a noise term and we have the ARX model
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An ARX model

T i
t = φ1T

i
t−1 + ω1T

e
t−1 + εt
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ARX model
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The residuals

ε̂t = T i
t −

ω̂1B

1− φ̂1B
T e

t
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Check for i.i.d. of residuals

Is it likely that this is white noise?
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Actually we miss an MA part!
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Check for i.i.d. of residuals

Is it likely that this is white noise? Almost!
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An ARMAX model

T i
t = φ1T

i
t−1 + ω1T

e
t + εt + θ1εt−1
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An ARMAX model

T i
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Validate the model with the residuals ACF
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Now we have white noise residuals, that is want to have after applying the model!

Remember, we are validating the one-step prediction residuals:
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Dependence between variables: Cross-correlation function

Simply shift the index to lag another series:

t T e
t T i

t T i
t−1

1 4 2

2 5 3 2

3 2 8 3

4 3 3 8

5 4 1 3

6 5 7 1

7 5 8 7

8 8
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Cross-correlation function

Cross-Correlation Function (CCF) between T e
t and T i

t
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Cross-correlation function

Cross-Correlation Function (CCF) between T e
t and εt
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Linear Dynamic Systems – notation

x F [·] y

Linear 

System

Input Output

x(t) Differential eq., h(u) y(t)

xt Difference eq., hk , h(B) yt
X (ω) H(ω) Y (ω)

X (z) H (z) Y (z)
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Description in the time domain (Convolution)

For linear time invariant systems:

▶ Discrete time:
yt =

∞∑
k=−∞

h(k)xt−k (1)

Think about

yt =

t∑
k=0

h(k)xt−k (2)

▶ h(k) is called the impulse response

, why? What happens if x0 = 1 and xk = 0 for k ̸= 0?

▶ Sk =
∑k

j=−∞ hj is called the step response, why? What happens if xk = 1 for all k?

▶ Sometimes people try to observe the impulse or step response directly. How could one do so?
gun shot, step increase in temperature set-point.
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Dynamic response characteristics from data

▶ While easy, direct observations of the impulse or step responses do not yield a lot of statistical
information.

▶ Instead, we use parameter estimation from data with varying inputs.
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Stability based on the impulse response function

If the impulse response function is absolutely convergent, the system is stable (Theorem 4.3).

▶ Continuous time: ∫ ∞

−∞
|h(u)|du <∞

▶ Discrete time:

∞∑
k=−∞

|hk | <∞
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The z -transform

▶ A way to describe dynamical systems in discrete time in the frequency domain:

Z ({xt}) =
∞∑

t=−∞
xtz
−t

= X (z) (z ∈ C)

▶ The z -transform of a time delay: Z ({xt−τ}) = z−τX (z)

▶ The transfer function of the system is called H (z) =

∞∑
t=−∞

htz
−t

yt =

∞∑
k=−∞

hkxt−k ⇔ Y (z) = H (z)X (z)
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Linear Difference Equation

yt + a1yt−1 + · · ·+ apyt−p = b0xt−τ + b1xt−τ−1 + · · ·+ bqxt−τ−q

(1+ a1z
−1 + · · ·+ apz

−p)Y (z) = z−τ (b0 + b1z
−1 + · · ·+ bqz

−q)X (z)

Transfer function:

H (z) =
z−τ (b0 + b1z

−1 + · · ·+ bqz
−q)

(1+ a1z−1 + · · ·+ apz−p)

=
z−τ (1− n1z

−1)(1− n2z
−1) · · · (1− nqz

−1)b0
(1− λ1z−1)(1− λ2z−1) · · · (1− λpz−1)

Where the roots n1,n2, . . . ,nq are called the zeros of the system and λ1, λ2, . . . , λp are called the
poles of the system. What does these roots say about stability and invertibility of the system?
The system is stable if all poles lie within the unit circle
The system is invertible if all zeroes lie within the unit circle
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Estimating the impulse response

▶ The shape of the impulse response function is dictated by what kind of relationship there is
between the input, X and the output, Y .

▶ The CCF (cross-correlation function) can be used to reveal this relationship, but requires
pre-whitening:
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Cross covariance and cross correlation functions

Estimate of the cross covariance function:

CXY (k) =
1

N

N−k∑
t=1

(Xt −X )(Yt+k −Y )

CXY (−k) =
1

N

N−k∑
t=1

(Xt+k −X )(Yt −Y )

Estimate of the cross correlation function:

ρ̂XY (k) = CXY (k)/
√

CXX (0)CYY (0)

What is a defining property of the CCF for causal systems with no feedback? If at least one of the
processes is white noise and if the processes are uncorrelated then ρ̂XY (k) is approximately
normally distributed with mean 0 and variance 1/N
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Cross Correlations for systems without measurement noise

outputinput
System tX Yt

Yt =

∞∑
i=−∞

hiXt−i

Given γXX and the system description we obtain

γYY (k) =

∞∑
i=−∞

∞∑
j=−∞

hihjγXX (k − j + i)

γXY (k) =

∞∑
i=−∞

hiγXX (k − i).

What happens when {Xt} is white noise?
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Systems with measurement noise

System Σ

Nt

Xt

Input

Yt

Output

Yt =

∞∑
i=−∞

hiXt−i +Nt .

Given γXX and γNN we obtain*:

γYY (k) =

∞∑
i=−∞

∞∑
j=−∞

hihjγXX (k − j + i) + γNN (k)

γXY (k) =

∞∑
i=−∞

hiγXX (k − i).

Again, notice what happens for white noise. *Assumption: No feedback in the system.
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Estimating the impulse response

▶ When our input is not white, we try and make it so by using pre-whitening.

▶ The reason is that

γXY (k) =

∞∑
i=−∞

hiγXX (k − i)

so if and only if {Xt} is white noise: γXY (k) = hkσ
2
X
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Pre-whitening

a) A suitable ARMA-model is applied to the input series:

η(B)Xt = ν(B)αt .

b) We perform a prewhitening of the input series

αt = ν(B)
−1η(B)Xt

c) The output–series {Yt} is filtered with the same model, i.e.

βt = ν(B)
−1η(B)Yt .

d) Now the impulse response function is estimated by

ĥk = Cαβ(k)/Cαα(0) = Cαβ(k)/S
2
α.
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Graphical output
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Impulse response functions
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Transfer function models

θ(B)
φ(B)

ω(B)Bb

δ(B) Σ

ϵt

White noise

Nt

Xt

Input

Yt

Output

Yt =
ω(B)

δ(B)
BbXt +

θ(B)

ϕ(B)
εt

▶ Also called Box-Jenkins models
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Some names

The following are all sub-models of transfer function models:

▶ FIR: Finite Impulse Response (impulse response function(s) of finite length):
yt =

∑∞
k=−∞ h(k)xt−k .

▶ ARX: Auto Regressive with eXogenous input: ϕ(B)Yt = ω(B)ut + ϵt .

▶ ARMAX: Auto Regressive Moving Average, eXogenous input: ϕ(B)Yt = ω(B)Xt + θ(B)εt .

▶ OE: Output Error model: Yt =
ω(B)
δ(B)B

bXt + εt .

▶ Regression models with ARMA noise (the xreg option to arima in R):

Yt = Xt +
θ(B)

ϕ(B)
εt or ϕ(B)Yt = ϕ(B)Xt + θ(B)εt
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Identification of transfer function models

h(B) =
ω(B)Bb

δ(B)
= h0 + h1B + h2B

2 + h3B
3 + h4B

4 + . . .

▶ Using pre-whitening we estimate the impulse response and“guess”an appropriate structure of
h(B) based on this.
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2 real poles h(B) =
1

1− 1.7B + 0.72B2
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2 complex h(B) =
1

1− 1.5B + 0.81B2
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1 real, 2 comp h(B) =
2− 2.35B + 0.69B2

1− 2.35B + 2.02B2 − 0.66B3
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Identification of the transfer function for the noise

▶ After selection of the structure of the transfer function of the input we estimate the parameters
of the model (assuming Nt to be white)

Yt =
ω(B)

δ(B)
BbXt +Nt

▶ Then, we extract the residuals {Nt} and identify a structure for an ARMA model of this series

Nt =
θ(B)

ϕ(B)
εt ⇔ ϕ(B)Nt = θ(B)εt

▶ Finally, we have the full structure of the model and we estimate all parameters simultaneously
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Estimation

▶ Form 1-step predictions, treating the input {Xt} as known (corresponds to conditioning on
observed {Xt} if it is actually stochastic)

▶ Select the parameters so that the sum of squares of these errors is as small as possible (implicit
assumption of {ϵt} being gaussian).

▶ For FIR and ARX models we can write the model as Y t = XT
t θ + εt and use LS-estimates
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Model validation

As for ARMA models with the additions:

▶ Test for cross correlation between the residuals and the input. If {εt} is white noise and when
there is no correlation between the input and the residuals then (approximately)

ρ̂εX (k) ∼ N (0, 1/N )

▶ A Portmanteau test (Ljung-Box) can also be performed to test for significent ccf’s.
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