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Solution 3.1

Question 1.

In the light of plotting Yt vs. xt the following simple linear regression model
seems reasonable

Yt = α + βxt + εt

where {ε} is assumed to be a sequence of mutually uncorrelated normal
distributed random variables with mean value 0 and variance σ2.

The observations can be written on matrix form:

Y1
Y2
Y3
Y4
Y5
Y6
Y7


=



1 x1
1 x2
1 x3
1 x4
1 x5
1 x6
1 x7


[
α
β

]
+



ε1
ε2
ε3
ε4
ε5
ε6
ε7


or

Y = xθ + ε

We find

x>x =

[
7 21.5
21.5 72.75

]
, x>Y =

[
16
41.5

]
I.e. from Theorem 3.1 (3.35) we get

θ̂ =

[
α̂

β̂

]
= (x>x)−1x>Y =

[
1.5479 −0.4574
−0.4574 0.1489

] [
16
41.5

]
=

[
5.784
−1.139

]
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An unbiased estimate of σ2 is from Theorem 3.4 (3.44)

σ̂2 =
(Y − xθ̂)>(Y − xθ̂)

n− p

= [(−0.228)2 + (−0.728)2 + (0.203)2 + (0.772)2 + (−0.006)2 +

(0.064)2 + (−0.076)2]/(7− 2)

= (0.496)2

where n is the number of observations and p is the number of parameters.
Question 2.

Ŷ8|7 = x>8 θ̂ =
[

1 0.5
] [ 5.784
−1.139

]
= 5.21

The prediction error is e8 = Y8 − Ŷ8|7. An estimate of the prediction error
variance is according to Theorem 3.10 (3.60)

V̂ [e8] = σ̂2[1 + x>8 (x>x)−1x8]

= 0.4962

[
1 +

[
1 0.5

] [ 1.5479 −0.4574
−0.4574 0.1489

] [
1
0.5

]]
= 0.7242

which leads to the following 90% confidence interval for Y8

Ŷ8|7 ± t0.05(n− p) · V̂ [e8]
1
2 = [3.75, 6.67]

Question 3.

A plot of Yt versus t reveals that a (global) linear trend would be a reason-
able description of the variations in Yt (a larger data set could give rise to
considering local linear trend models). This solutions follows that approach
a OLS approach is also possible - if so then focus on the the results
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I.e. the model is
Yn+j = f>(j)θ + εn+j

where f(j) = [1 j]> and θ = [θ0 θ1]
>. {εt} is again assumed to be a sequence

of mutually uncorrelated normal distributed random variables with mean
value 0 and variance σ2.

F7 = x>7 x7 =
6∑
j=0

f(−j)f>(−j) =

[
7 −21

−21 91

]

h7 = x>7 Y =
6∑
j=0

f(−j)Yn−j =

[
16
−32.5

]
I.e. from (3.89)

θ̂7 = (x>7 x7)
−1x>7 Y = F−17 h7 =

[
0.46429 0.10714
0.10724 0.03571

] [
16
−32.5

]
=

[
3.947
0.554

]
An unbiased estimate of σ2 is given by (3.44)

σ̂2 =

∑6
j=0(Y7−j − f>(−j)θ̂7)2

7− 2

= [(0.053)2 + (−0.393)2 + (0.661)2 + (−0.285)2 + (0.269)2 +

(−0.677)2 + (0.377)2]/5

= (0.5193)2

And the variance of the prediction error is obtained from (3.91)

V̂ [e8] = σ̂2[1 + f>(1)F−17 f(1)]

= 0.51932

[
1 +

[
1 1

] [ 0.46429 0.10714
0.10714 0.03571

] [
1
1

]]
= 0.6802

According to (3.92) the 90% confidence interval is

Ŷ8|7 ± t0.05(7− 2) · V̂ [e8]
1
2 = [3.131, 5.871]
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Solution 3.2

Question 1.

The unweighted least square estimator (β̂∗) is given by

β̂∗ = (XTX)−1XTY .

The expected value of the estimator is

E[β̂∗] =E[(XTX)−1XTY ]

=E[(XTX)−1XT (Xβ + ε)]

=β + (XTX)−1XTE[ε] = β

I.e. the estimate is unbiased.
The variance of the estimator can be calculated as

V [β̂∗] =E[(β̂∗ − E[β̂∗])(β̂∗ − E[β̂∗])T ]

where,

β̂∗ − E[β̂∗] =β̂∗ − β = (XTX)−1XTY − β
=(XTX)−1XT (Xβ + ε)− β = (XTX)−1XT ε

i.e

V [β̂∗] =(XTX)−1XTV [ε]X(XTX)−1

=(XTX)−1
[
X1 · · · XN

] 
σ2

X2
1
· · · 0

...
. . .

...

0 · · · σ2

X2
N


X1

...
XN

 (XTX)−1

=σ2N(XTX)−2 =
Nσ2(∑N
t=1X

2
t

)2

Question 2.

5



The weighted least square estimator β̂ is given by

β̂ = (XTΣ−1X)−1XTΣ−1Y

We have

β̂ − β =(XTΣ−1X)−1XTΣ−1(Xβ + ε)− β
=(XTΣ−1X)−1XTΣ−1ε

As E[β̂] = β the expression for the variance becomes

V [β̂] =(XTΣ−1X)−1XTΣ−1V [ε]Σ−1X(XTΣ−1X)−1

=σ2(XTΣ−1X)−1 =
σ2∑N
t=1X

4
t

Question 3.

(∑N
t=1X

2
t

)2
N

=
X2

1X
2
1 +X2

1X
2
2 +X2

1X
2
3 + ...+X2

NX
2
N

N

=
X2

1X
2
1 +X2

2X
2
2 + 2X2

1X
2
2 + 2X2

1X
2
3 + ...

N

≤X
2
1X

2
1 +X2

2X
2
2 +X2

1X
2
1 +X2

2X
2
2 +X2

1X
2
1 +X2

3X
2
3 + ...

N

(as (X2
i + X2

j )2 ≥ 0 ⇔ X4
i + X4

j ≥ 2X2
iX

2
j ). The numerator of the above

fraction contains N terms with X4
i . I.e. the fraction is equal to

∑N
t=1X

4
t and

V [β̂∗] ≥ V [β̂]

Question 4.
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The variance of ε is now set to

V [ε] = σ2Σ = σ2



1 ρ 0 · · · 0 0
ρ 1 ρ · · · 0 0
0 ρ 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 ρ
0 0 0 · · · ρ 1


The unweighted least square estimator

β̂∗ = (XTX)−1XTY ,

is still unbiased, as

E[β̂∗] = β + (XTX)−1XTE[ε] = β

The variance of the estimator is

V [β̂∗] =(XTX)−1XTV [ε]X(XTX)−1

=
σ2
(∑N

t=1X
2
t + 2ρ

∑N−1
t=1 XtXt+1

)
(∑N

t=1X
2
t

)2
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Solution 3.3

Question 1.:

The observations Y1, Y2, · · · , YN can be described by the model
Y1
Y2
...
YN

 =


1 cosω sinω
1 cos 2ω sin 2ω
...

...
...

1 cosNω sinNω


 µ
α
β

+


ε1
ε2
...
εN


Or

Y = xθ + ε

The stochastic vector ε has E[ε] = 0 and V [ε] = σ2I (I is the identity matrix).

The least square estimate of θ = [µ α β]> is calculated as the solution to the
normal equation (Theorem 3.1)

θ̂ = (x>x)−1x>Y ,
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where

x>x =

 1 1 · · · 1
cosω cos 2ω · · · cosNω
sinω sin 2ω · · · sinNω




1 cosω sinω
1 cos 2ω sin 2ω
...

...
...

1 cosNω sinNω



=

 N
∑N

t=1 cos tωi
∑N

t=1 sin tω∑N
t=1 cos tω

∑N
t=1 cos2 tω

∑N
t=1 cos tω sin tω∑N

t=1 sin tω
∑N

t=1 cos tω sin tω
∑N

t=1 sin2 tω



and

x>Y =

 1 1 · · · 1
cosω cos 2ω · · · cosNω
sinω sin 2ω · · · sinNω



Y1
Y2
...
YN


=

 ∑N
t=1 Yt∑N
t=1(cos tω)Yt∑N
t=1(sin tω)Yt


Question 2.:

The fundamental frequency (where a period in oscillations covers exactly all
observations) is ω1 = 2π/N . We set the frequency to be equal a multiplum
of the fundamental frequency, i.e. ω = ωi = 2πi/N (i ∈ Z).

Applying the hints and the fact that

N∑
t=1

cos(tωi) =
N∑
t=1

cos

(
2πi

N
t

)
= 0 and

N∑
t=1

sin(tωi) =
N∑
t=1

sin

(
2πi

N
t

)
= 0
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the following is obtained.

x>x =

 N 0 0
0 N

2
0

0 0 N
2


and

x>Y =

 ∑N
t=1 Yt∑N
t=1(cos tωi)Yt∑N
t=1(sin tωi)Yt


I.e.

θ̂ =

 µ̂
α̂

β̂

 =

 1
N

∑N
t=1 Yt

2
N

∑N
t=1 Yt cos(ωit)

2
N

∑N
t=1 Yt sin(ωit)


Question 3.:

I(ωi) =
N∑
t=1

(α̂ cosωit+ β̂ sinωit)
2

=
N∑
t=1

[
α̂2 cos2 ωit+ β̂2 sin2 ωit+ α̂β̂ cosωit sinωit

]
=

α̂2N

2
+
β̂2N

2
+ 0

=
[
α̂2 + β̂2

] N
2
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Solution 3.4

Question 1.

In figure 1 the velocity is plotted as a function of observations. By inspecting
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Figure 1: Left: Plot of wind velocity vs. observations. Right: Plot of log
wind velocity vs. observations.

the graph it is assumed that log Yt depends linear on t in each area (due to
the few observations it is impossible to determine if the dependency is more
linear in the logarithmic case). Furthermore the slope is believed to be the
same in the two areas. It is obvious that having measurement from a longer
period of time the model will not could be described by a linear model, but
for the restricted area, which is considered, it is reasonable to use a linear
model with constant parameters.

The mixed model will be suitable for describing the variations in the observed
wind speed

log Yt = θ1 + θ2t+ θ3ρt + εt

where

ρt =

{
0 for t ≤ 4
1 for t ≥ 5

It is assumed that V [ε] = σ2 (i.e. constant).

Question 2.
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Using the model from question 2 the observations can be written as

log Y1
...

log Y4
log Y5

...
log Y8


=



1 1 0
...

...
...

1 4 0
1 5 1
...

...
...

1 8 1


 θ1
θ2
θ3

+



ε1
...
ε4
ε5
...
ε8


or

Y? = xθ + ε

We find

x>x =

 8 36 4
36 204 26
4 26 4

 , x>Y? =

 11.4429
53.4840
6.6273


which by equation (3.35) leads to

θ̂ = (x>x)−1x>Y? =

 0.875 −0.25 0.75
−0.25 0.1 −0.4
0.75 −0.4 2.1

 11.4429
53.4840
6.6273

 =

 1.6121
−0.1633
1.1060


By using (3.44) we get the unbiased estimate of σ2

σ̂2 =

∑8
t=1(log Yt − x>t θ̂)

2

8− 3
= 0.09642

The difference in wind speed at the two measurement locations is determined
by θ3. Let Y ↓t and Y ↑t be the wind speed at the old and new measurement
locations, respectively.

log Y ↑t − log Y ↓t = θ3

or
Y ↑t

Y ↓t
= exp(θ̂3) = 3.022

The estimated model indicates that the wind speed at the top of the building
is approx. 3 times higher than the wind speed at the normal measurement
location (2 m. above ground level).
We were able to calculate the relative difference in wind speed, as the model
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were made for log Y in stead of Y . The relative value often gives more
information than the absolute value. The same calculations as above with a
model for Y would result in an absolute difference in wind speed on 4.870.

Question 3.

The predicted wind speed in one hour (t = 9) at the old measurement location
is given as

log Ŷ9 = x>θ̂ =
[

1 9 0
]  0.700
−0.0709

0.480

 = 0.0619 ⇒

Ŷ9 = 1.15 m/s
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Solution 3.5

Question 1.

The model with local constant mean:

Yn+j = θ0 + εN+j (forgetting factor: 0 < λ ≤ 1)

I.e. f>(j) = 1. The prediction of YN+` given the observations Y1, Y2, ..., YN
is given by (3.101)

ŶN+`|N = f>(`)θ̂N = θ̂N ,

where θ̂N can be estimated by (3.99)

θ̂N = F−1N hN .

From equation (1.100) it follows that

FN =
N−1∑
j=0

λjf(−j)f>(−j) =
N−1∑
j=0

λj =
1− λN

1− λ

hN =
N−1∑
j=0

λjf(−j)YN−j =
N−1∑
j=0

λjYN−j

I.e.

ŶN+`|N = f>(`)θ̂N =
1− λ

1− λN
N−1∑
j=0

λjYN−j

Question 2.

Using L’Hospital’s rule we obtain the following

1− λ
1− λN

→ 1

N
for λ→ 1 ,

and the prediction equation for λ→ 1 becomes

ŶN+`|N →
1

N

N−1∑
j=0

YN−j = Ȳ
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which is identical to (3.64).

Question 3.

The steady state value of F is according to (3.105)

lim
n→∞

FN+1 = F =
∑
j≥0

λj =
1

1− λ

From theorem 3.14 we get the updating of the parameters in the locally
constant trend model at steady state

θ̂N+1 = θ̂n + (1− λ)
[
YN+1 − ŶN+1|N

]
Since θ̂N = ŶN+1|N the updating of the on-step prediction is

ŶN+2|N+1 = ŶN+1|N + (1− λ)
[
YN+1 − ŶN+1|N

]
= (1− λ)YN+1 + λŶN+1|N

which is identical to (3.74).
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Solution 3.6

Question 1.

We consider a linear trend model of the form

YN+j = f>(j)θ + εN+j = xNθ + ε

where f(j) = [1 j]>, θ = [θ0 θ1]
> and x = (fT (−N + 1), ...fT (−1), fT (0)).

V[ε] = σ2 where Σ = diag[1/λN−1,...,1/λ,1] will be used as weights and λ is
known to be λ = 0.9. Using (3.100)

F7 = x>7 Σ−1x7 =
6∑
j=0

λjf(−j)f>(−j) =

[
5.22 −13.47

−13.47 55.09

]

h7 = x>7 Σ−1Y =
6∑
j=0

λjf(−j)Yn−j =

[
13.13
−22.66

]
From (3.99)

θ̂7 = F−17 h7 =

[
3.949
0.554

]
,

and the prediction of Y8 giving the 7 previous observations is

Ŷ8|7 = f>(1)θ̂7 =
[

1 1
] [ 3.949

0.554

]
= 4.503

A not too biased estimate of σ2 is given by

σ̂7
2 =

∑7
j=1 λ

7−j(Yj − f>(1)θ̂7)
2

T − p
,

where T =
∑7

j=1 λ
7−j and p = 2. Which leads to:

σ̂7
2 = (0.543)2
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The variance of the prediction error is obtained from (3.102)

V̂ [e7] = σ̂2[1 + f>(1)F−17 f(1)]

= (0.543)2
[
1 +

[
1 1

] [ 0.520 0.127
0.127 0.049

] [
1
1

]]

= 0.7332

According to (3.92) the 90% confidence interval is

Ŷ8|7 ± t0.05(T − 2) · V̂ [e7]
1
2 = [2.823, 6.182]

Question 2.

We now assume that y8 = 5.0 is given. Using theorem 3.103 we get

F8 = F7 + λ7f(−7)f>(−7) =

[
5.69 −16.82
−16.82 78.52

]
h8 = λL−1h7 + f(0)Y8 =

[
16.82
−32.21

]
,

where L =

[
1 0
1 1

]
. The updated parameter estimate is

θ̂8 = F−18 h8 =

[
4.741
0.605

]
,

and the predicted value of Y9 given y8 is

Ŷ9|8 = f>(1)θ̂8 = 5.346.

σ̂2 is estimated as in Question 1. (σ̂2
8 = 0.5162). The variance of the predic-
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tion error is

V̂ [e8] = σ̂2[1 + f>(1)F−18 f(1)]

= 0.5162

[
1 +

[
1 1

] [ 0.478 0.102
0.102 0.035

] [
1
1

]]

= 0.6762

Thus the 90% confidence interval is

Ŷ9|8 ± t0.05(T − 2) · V̂ [e8]
1
2 = [3.870, 6.821]
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